Формальдегид взаимодействует с


Формальдегид - что это? Класс опасности, формула, химические свойства

Закрыть
  • Болезни
    • Инфекционные и паразитарные болезни
    • Новообразования
    • Болезни крови и кроветворных органов
    • Болезни эндокринной системы
    • Психические расстройства
    • Болезни нервной системы
    • Болезни глаза
    • Болезни уха
    • Болезни системы кровообращения
    • Болезни органов дыхания
    • Болезни органов пищеварения
    • Болезни кожи
    • Болезни костно-мышечной системы
    • Болезни мочеполовой системы
    • Беременность и роды
    • Болезни плода и новорожденного
    • Врожденные аномалии (пороки развития)
    • Травмы и отравления
  • Симптомы
    • Системы кровообращения и дыхания
    • Система пищеварения и брюшная полость
    • Кожа и подкожная клетчатка
    • Нервная и костно-мышечная системы
    • Мочевая система
    • Восприятие и поведение
    • Речь и голос
    • Общие симптомы и признаки
    • Отклонения от нормы
  • Диеты
    • Снижение веса
    • Лечебные
    • Быстрые
    • Для красоты и здоровья
    • Разгрузочные дни
    • От профессионалов
    • Монодиеты
    • Звездные
    • На кашах
    • Овощные
    • Детокс-диеты
    • Фруктовые
    • Модные
    • Для мужчин
    • Набор веса
    • Вегетарианство
    • Национальные
  • Лекарства
    • Антибиотики
    • Антисептики
    • Биологически активные добавки
    • Витамины
    • Гинекологические
    • Гормональные
    • Дерматологические
    • Диабетические
    • Для глаз
    • Для крови
    • Для нервной системы
    • Для печени
    • Для повышения потенции
    • Для полости рта
    • Для похудения
    • Для суставов
    • Для ушей
    • Желудочно-кишечные
    • Кардиологические
    • Контрацептивы
    • Мочегонные
    • Обезболивающие
    • От аллергии
    • От кашля
    • От насморка
    • Повышение иммунитета
    • Противовирусные
    • Противогрибковые
    • Противомикробные
    • Противоопухолевые
    • Противопаразитарные
    • Противопростудные
    • Сердечно-сосудистые
    • Урологические
    • Другие лекарства
    ДЕЙСТВУЮЩИЕ ВЕЩЕСТВА
  • Врачи
  • Клиники
  • Справочник
    • Аллергология
    • Анализы и диагностика
    • Беременность
    • Витамины
    • Вредные привычки
    • Геронтология (Старение)
    • Дерматология
    • Дети
    • Женское здоровье
    • Инфекция
    • Контрацепция
    • Косметология
    • Народная медицина
    • Обзоры заболеваний
    • Обзоры лекарств
    • Ортопедия и травматология
    • Питание
    • Пластическая хирургия
    • Процедуры и операции
    • Психология
    • Роды и послеродовый период
    • Сексология
    • Стоматология
    • Травы и продукты
    • Трихология
    • Другие статьи
  • Словарь терминов
    • [А] Абазия .. Ацидоз
    • [Б] Базофилы .. Богатая тромбоцитами плазма
    • [В] Вазектомия .. Выкидыш
    • [Г] Галлюциногены .. Грязи лечебные
    • [Д] Дарсонвализация .. Дофамин
    • [Ж] Железы .. Жиры
    • [З] Заместительная гормональная терапия
    • [И] Игольный тест .. Искусственная кома
    • [К] Каверна .. Кумарин
    • [Л] Лапароскоп .. Лучевая терапия
    • [М] Магнитотерапия .. Мутация
    • [Н] Наркоз .. Нистагм
    • [О] Общий анализ крови .. Отек
    • [П] Паллиативная помощь .. Пульс
    • [Р] Реабилитация .. Родинка (невус)
    • [С] Секретин .. Сыворотка крови
    • [Т] Таламус .. Тучные клетки
    • [У] Урсоловая кислота
    • [Ф]

Химические свойства альдегидов и кетонов

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Строение, изомерия и гомологический ряд альдегидов и кетонов

Химические свойства альдегидов и кетонов

Способы получения альдегидов и кетонов

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода. 

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами

Структурная формула кетонов:

 

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацеталиэто соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

 

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

 

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

 

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

 

Вторичные спирты окисляются в кетоны:

вторичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

 

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Видеоопыт окисления муравьиного альдегида гидроксидом меди (II) можно посмотреть здесь.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + Cu(OH)2 = Cu + HCOOH + H2O

Чаще в этой реакции образуется оксид меди (I):

HCHO + 2Cu(OH)2 = Cu2O + HCOOH + 2H2O

 

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

 

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды. 

Упрощенный вариант реакции: 

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с  разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метаналь СН2ОCO2K2CO3
Альдегид R-СНОR-COOHR-COOK
КетонR-COOH/ СО2R-COOK/ K2СО3

 

 

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2nО + 3n/2O2 → nCO2 + nH2O + Q

Например, уравнение сгорания метаналя:

CH2O + O2 = CO2 + H2O

 

3. Замещение водорода у атома углерода, соседнего с карбонильной группой 

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

 

4. Конденсация с фенолами 

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

 

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.). 

5. Полимеризация альдегидов 

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Поделиться ссылкой:

Материал из Википедии | Формальдегид

Формальдеги́д (от лат. formīca «муравей») — бесцветный газ с резким запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритант, токсичен.

Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид метанола и муравьиной кислоты.

Физические свойства

Величина Значение
Ст. энергия Гиббса образования ΔG −110 кДж/моль (г)
Ст. энтропия образования S 218,66 Дж/моль·K (г)
Ст. мольная теплоёмкость Cp 35,35 Дж/моль·K (г)
Энтальпия кипения ΔHкип 23,3 кДж/моль

Химические свойства

Из-за низкой электронной плотности на атоме углерода формальдегид легко вступает в реакции даже со слабыминуклеофилами. Этим, в частности, объясняется тот факт, что в водных растворах формальдегид находится в гидратированной форме.

Формальдегид вступает во все реакции, характерные для алифатических альдегидов. В частности, в реакции с нуклеофилами и восстановительными реагентами.

Окисление формальдегида различными реагентами:

Реакция с фенолом с образованием фенолформальдегидных смол[1]:

Получение

Основной промышленный метод получения формальдегида — окисление метанола:

Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %[2].

Процесс дегидрирования метанола, осуществлённый на цинк-медных катализаторах при 600 °C, пока не получил широкого развития, однако он является очень перспективным, поскольку позволяет получать формальдегид, не содержащий воды.

Существует также промышленный способ получения формальдегида окислением метана:

Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4.

Применение

Водный раствор формальдегида (метандиол), стабилизированный метанолом, — формалин — вызывает денатурацию белков, поэтому он применяется в качестве дубителя в кожевенном производстве и дубления желатина при производстве кинофотоплёнки. Из-за сильного дубящего эффекта формальдегид является также сильным антисептиком, это свойство формалина используется в медицине (формидрон, Формагель и подобные препараты) и дляконсервации биологических материалов (создание анатомических и других препаратов).

Водный раствор формальдегида (метандиол), стабилизированный карбамидом, — КФК — является одним из важнейших источников формальдегида и карбамида в производстве карбамидоформальдегидных, меламинокарбамидоформальдегидных смол и для обработки карбамида против слеживаемости; применяется в деревообрабатывающей и мебельной промышленности для производства фанеры, ДСП и т. д.

Основная часть формальдегида идёт на изготовление полимеров-реактопластов (фенолформальдегидные, карбамидформальдегидные и меламинформальдегидные смолы), он широко используется также в промышленном органическом синтезе (пентаэритрит, триметилолпропан и т. д.).

При хранении (при температуре ниже 9 °С) раствор формальдегида мутнеет, выпадает белый осадок (параформальдегид).

В пищевой промышленности зарегистрирован под кодом E240[3].

Формальдегид в косметике

Директивой 76/768 ЕЭС допускается применение формальдегида в качестве консерванта в количестве до 0,1 % в составе косметических средств, предназначенных для гигиены полости рта, и до 0,2 % в прочих косметических препаратах.

В фармакологии препараты, содержащие до 0,5 % формальдегида, применяются для снижения потливости без каких-либо ограничений, и только при применении мази, содержащей 5 % этого вещества, рекомендуется не наносить её на кожу лица.[4] Запрещается применять для консервации средств в аэрозольной упаковке, спреев. Продукция должна иметь предупреждение «содержит формальдегид», если содержание формальдегида в готовой продукции превышает 0,05 %. С точки зрения спектра противомикробной активности, формальдегид проявляет активность в отношении грамположительных, грамотрицательных бактерий, дрожжеподобных и плесневых грибов. В то же время формальдегид и парабены снижают противомикробные свойства в присутствии белков.[5] Наряду с этим установлено улучшение физико-механических свойств волоса после обработки его формалином. Кератин с формальдегидом может взаимодействовать по-разному. Формальдегид может реагировать с — S — Н группами, образуя связи — S — СН2 — S — С — Nh3 группами боковых цепей и т. д. Например, прочная связь — NH- СН образуется при взаимодействии формальдегида с амидогруппами остатков дикарбоновых кислот и аминогруппами гуанидиновых групп аргинина.[6]

В литературе сведения о влиянии разбавленных растворов формальдегида на кожу человека практически отсутствуют. Известно, что если выдержать ухо кролика в формалине (37%-й раствор формальдегида) в течение 30 минут, то оно покраснеет и начнет шелушиться, а впоследствии полностью восстановится (регенерирует).

Так как формальдегид в развитых странах используется исключительно в композиции косметических препаратов, не остающихся на коже, вероятность возникновения кожной реакции была рассчитана для случаев использования шампуня, содержащего в качестве консерванта 0,1 % формальдегида. Расчет показал, что нежелательная кожная реакция при применении такого шампуня возникнет только у 1 человека из 75 000. При этом в действительности эта цифра будет ещё менее значимой, поскольку при проведении расчетов не учитывался ряд факторов, не поддающихся точному учету, но неопровержимо снижающих эту вероятность. Во-первых, расчет основывался на базовых данных по содержанию формальдегида непосредственно на коже человека. При мытье волос в непосредственном контакте с кожей находится лишь незначительная часть формальдегида, находящегося в шампуне. Во-вторых, в связи с невысокой стойкостью формальдегида в водных растворах (испарение), его концентрация с течением времени понижается.[4]

Безопасность и токсические свойства

Категория взрывоопасности IIB по ГОСТ Р 51330.11-99, группа взрывоопасности Т2 по ГОСТ Р 51330.5-99. Концентрационные пределы воспламенения7-73 % об.; Класс опасности I (чрезвычайно опасные вещества)[7] ; температура самовоспламенения — 435 °C.

Формальдегид образуется в организме путём окисления метанола.

Обладает токсичностью, негативно воздействует на генетический материал, репродуктивные органы, дыхательные пути, глаза, кожный покров. Оказывает сильное действие на центральную нервную систему.

Предельно допустимые концентрации (ПДК) формальдегида:[8][9][10]

  • ПДКр.з. = 0,5 мг/м³
  • ПДКм.р. = 0,05 мг/м³
  • ПДКс.с. = 0,01 мг/м³
  • ПДКв. = 0,05 мг/л

С 25 мая 2014 г. вступило в силу Постановление Главного государственного санитарного врача Российской Федерации, согласно которому установлены следующие значения ПДКм.р. = 0,05 мг/м³, ПДКс.с. = 0,01 мг/м³[7]

Смертельная доза 40 % водного раствора формальдегида (формалина) составляет 10—50 г.

Воздействие на организм 

Формальдегид токсичен: приём внутрь 60-90 мл является смертельным. Симптомы отравления: бледность, упадок сил, бессознательное состояние, депрессия, затруднённое дыхание, головная боль, нередко судороги.

При остром ингаляционном отравлении: конъюнктивит, острый бронхит, вплоть до отёка лёгких. Постепенно нарастают признаки поражения центральной нервной системы (головокружение, чувство страха, шаткая походка, судороги). При отравлении через рот: ожог слизистых оболочек пищеварительного тракта (жжение, боль в глотке, по ходу пищевода, в желудке, рвота кровавыми массами, понос), геморрагический нефрит, анурия. Возможны отёк гортани, рефлекторная остановка дыхания.

Хроническое отравление у работающих с техническим формалином проявляется похудением, диспепсическими симптомами, поражением центральной нервной системы (психическое возбуждение, дрожание, атаксия, расстройства зрения, упорные головные боли, плохой сон). Описаны органические заболевания нервной системы (таламический синдром), расстройства потоотделения, температурная асимметрия. Отмечены случаи бронхиальной астмы.

В условиях воздействия паров формалина (например, у рабочих, занятых изготовлением искусственных смол), а также при непосредственном контакте с формалином или его растворами наблюдаются, в особенности в первые дни работы, выраженные дерматиты лица, предплечий и кистей, поражения ногтей (их ломкость, размягчение). Возможны дерматиты и экземы аллергического характера. После перенесённого отравления чувствительность к формалину повышается. Имеются сведения о неблагоприятном влиянии на специфические функции женского организма[11][12]..

Канцерогенность

Формальдегид внесён в список канцерогенных веществ ГН 1.1.725—98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[13][14][15].

Международным агентством по исследованию рака официально доказана связь формальдегида, применяемого в производстве смол, пластиков, красок, текстиля, в качестве дезинфицирующего и консервирующего средства, с повышенным риском развития раковых опухолей носоглотки[16].

Формальдегид - это... Что такое Формальдегид?

Формальдегид (от лат. formīca «муравей») — бесцветный газ с резким запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритант, токсичен.

Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид муравьиной кислоты.

Физические свойства

Величина Значение
Ст. энергия Гиббса образования ΔG −110 кДж/моль (г)
Ст. энтропия образования S 218,66 Дж/моль·K (г)
Ст. мольная теплоёмкость Cp 35,35 Дж/моль·K (г)
Энтальпия кипения ΔHкип 23,3 кДж/моль

Химические свойства

Из-за низкой электронной плотности на атоме углерода формальдегид легко вступает в реакции даже со слабыми нуклеофилами. Этим, в частности, объясняется тот факт, что в водных растворах формальдегид находится в гидратированной форме.

.

Формальдегид вступает во все реакции, характерные для алифатических альдегидов. В частности, в реакции с нуклеофилами и восстановительными реагентами.

Получение

Основной промышленный метод получения формальдегида — окисление метанола:

Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %[1].

Процесс дегидрирования метанола, осуществлённый на цинк-медных катализаторах при 600 °C, пока не получил широкого развития, однако он является очень перспективным, поскольку позволяет получать формальдегид, не содержащий воды.

Существует также промышленный способ получения формальдегида окислением метана:

Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4.

Безопасность и токсические свойства

Категория взрывоопасности IIB по ГОСТ Р 51330.11-99, группа взрывоопасности Т2 по ГОСТ Р 51330.5-99. Концентрационные пределы воспламенения 7-73 % об.; температура самовоспламенения — 435 °C.

Формальдегид образуется в организме путём окисления метанола.

Обладает токсичностью, негативно воздействует на генетический материал, репродуктивные органы, дыхательные пути, глаза, кожный покров. Оказывает сильное действие на центральную нервную систему.

Предельно допустимые концентрации (ПДК) формальдегида:[2][3][4]

Смертельная доза 40 % водного раствора формальдегида (формалина) составляет 10—50 г.

Воздействие на организм и симптомы хронического отравления

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Формальдегид оказывает отрицательное влияние на органы дыхания, вызывая парез дыхательных путей (остановку дыхания), на кожный покров (ярко выраженные дерматиты, экземы, язвы), нервную систему (энцефалопатии). При длительном воздействии формалин оказывает аллергенное, мутогенное и канцерогенное воздействие. При постоянном воздействии высоких концентраций этого вещества могут возникнуть мутации органов. Оно влияет на почки и печень, а также на центральную нервную систему, вызывая головные боли, усталость и депрессию. Потенциально он может вызывать астму и астматические приступы. Формальдегид накапливается в организме и трудно выводится. [5]

Симптомы отравления: бледность, упадок сил, бессознательное состояние, депрессия, затруднённое дыхание, головная боль, нередко судороги по ночам.

При остром ингаляционном отравлении: конъюнктивит, острый бронхит, вплоть до отёка лёгких. Постепенно нарастают признаки поражения центральной нервной системы (головокружение, чувство страха, шаткая походка, судороги).

При отравлении через рот: ожог слизистых оболочек пищеварительного тракта (жжение, боль в глотке, по ходу пищевода, в желудке, рвота кровавыми массами, понос), геморрагический нефрит, анурия. Возможны отёк гортани, рефлекторная остановка дыхания.

Хроническое отравление у работающих с техническим формалином проявляется похуданием, диспепсическими симптомами, поражением центральной нервной системы (психическое возбуждение, дрожание, атаксия, расстройства зрения, упорные головные боли, плохой сон). Описаны органические заболевания нервной системы (таламический синдром), расстройства потоотделения, температурная асимметрия. Отмечены случаи бронхиальной астмы.

В условиях воздействия паров формалина (например, у рабочих, занятых изготовлением искусственных смол), а также при непосредственном контакте с формалином или его растворами наблюдаются, в особенности в первые дни работы, выраженные дерматиты лица, предплечий и кистей, поражения ногтей (их ломкость, размягчение). Возможны дерматиты и экземы аллергического характера. После перенесённого отравления чувствительность к формалину повышается. Имеются сведения о неблагоприятном влиянии на специфические функции женского организма[6].

Канцерогенность

Формальдегид внесён в список канцерогенных веществ ГН 1.1.725-98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[7][8][9].

По официальным данным Международного агентства по исследованию рака, доказана связь формальдегида, применяющегося в производстве смол, пластиков, красок, текстиля, в качестве дезинфицирующего и консервирующего средства, с повышенным риском развития раковых опухолей носоглотки.[10]

Применение

Водный раствор формальдегида — формалин — вызывает денатурацию белков, поэтому он применяется в качестве дубителя в кожевенном производстве и дубления желатина при производстве кинофотоплёнки. Из-за сильного дубящего эффекта формальдегид также является и сильным антисептиком, это свойство формалина используется в медицине, как антисептик (формидрон, Формагель и подобные препараты) и для консервации биологических материалов (создание анатомических и других препаратов).

Основная часть формальдегида идёт на изготовление полимеров-реактопластов (фенолформальдегидные, карбамидформальденидные и меламинформальдегидные смолы), он также широко используется в промышленном органическом синтезе (пентаэритрит, триметилолпропан и т. д.).

При хранении (при температуре ниже 9 С) раствор формальдегида мутнеет, выпадает белый осадок (параформальдегид).

Использование формальдегида в составе косметических средств

Директивой 76/768 ЕЭС допускается применение формальдегида в качестве консерванта в количестве до 0,1% в составе косметических средств, предназначенных для гигиены полости рта, и до 0,2% в прочих косметических препаратах. В фармакологии препараты, содержащие до 0,5% формальдегида, применяются для снижения потливости без каких-либо ограничений, и только при применении мази, содержащей 5% этого вещества, рекомендуется не наносить ее на кожу лица.[11] Запрещается применять для консервации средств в аэрозольной упаковке, спреев. Продукция должна иметь предупреждение «содержит формальдегид», если содержание формальдегида в готовой продукции превышает 0,05%. С точки зрения спектра противомикробной активности, формальдегид проявляет активность в отношении грамположительных, грамотрицательных бактерий, дрожжеподобных и плесневых грибов. В то же время формальдегид и парабены снижают противомикробные свойства в присутствии белков. [12] Рядом с этим установлено улучшение физико-механических свойств волоса после обработки его формалином. Кератин с формальдегидом может взаимодействовать по-разному. Формальдегид может реагировать с — S — Н группами, образуя связи — S — СН2 — S — С — Nh3 группами боковых цепей и т. д. Например, прочная связь — NH- СН образуется при взаимодействии формальдегида с амидогруппами остатков дикарбоновых кислот и аминогруппами гуанидиновых групп аргинина.[13]

В литературе сведения о влиянии разбавленных растворов формальдегида на кожу человека практически отсутствуют. Известно, что если выдержать ухо кролика в формалине (37%-й раствор формальдегида) в течение 30 минут, то оно покраснеет и начнет шелушиться, а впоследствии полностью восстановится (регенерирует).

Так как формальдегид в развитых странах используется исключительно в композиции косметических препаратов, не остающихся на коже, вероятность возникновения кожной реакции была рассчитана для случаев использования шампуня, содержащего в качестве консерванта 0,1% формальдегида. Расчет показал, что нежелательная кожная реакция при применении такого шампуня возникнет только у 1 человека из 75 000. При этом в действительности эта цифра будет еще менее значимой, поскольку при проведении расчетов не учитывался ряд факторов, не поддающихся точному учету, но неопровержимо снижающих эту вероятность. Во-первых, расчет основывался на базовых данных по содержанию формальдегида непосредственно на коже человека. При мытье волос в непосредственном контакте с кожей находится лишь незначительная часть формальдегида, находящегося в шампуне. Во-вторых, в связи с невысокой стойкостью формальдегида в водных растворах (испарение), его концентрация с течением времени понижается.[11]

Примечания

См. также

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Задание 14


Задание 14.1

Из предложенного перечня выберите два вещества, с которыми реагирует формальдегид.

1) Cu
2) N2
3) H2
4) Ag2O (NH3 р-р)
5) CH3OCH3

Запишите в поле ответа номера выбранных веществ.

Источник - Демонстрационный вариант КИМ ЕГЭ по химии 2019 года

Решение

Формальдегид взаимодействует с водородом с образованием метилового спирта (реакция гидрирования):

Формальдегид также взаимодействует с аммиачным раствором оксида серебра (I) (реакция серебряного зеркала):

Ответ: 34


Задание 14.2

Из предложенного перечня выберите два вещества, с которыми реагирует этиленгликоль.

1) 2-метилбутен-1
2) азот
3) бромоводород
4) пентин-2
5) уксусная кислота

Запишите в поле ответа номера выбранных веществ.

Решение

Этиленгликоль взаимодействует с бромоводородом с последовательным замещением гидроксильных групп на атомы брома с конечным образованием 1,2-дибромэтана:

Этиленгликоль также реагирует с уксусной кислотой с образованием сложного эфира:

Ответ: 35


Задание 14.3

Из предложенного перечня выберите два вещества, с которыми реагирует глицерин.

1) гидроксид меди (II)
2) кумол
3) бутадиен-1,3
4) натрий
5) медь

Запишите в поле ответа номера выбранных веществ.

Решение

Глицерин взаимодействует с гидроксидом меди (II) с образованием ярко-синего раствора глицерата меди (II):

Глицерин также реагирует с натрием с образованием моно-, ди- и тризамещённых продуктов:

Ответ: 14


Задание 14.4

Из предложенного перечня выберите два вещества, с которыми реагирует ацетальдегид.

1) этан
2) этанол
3) медь
4) гидроксид меди (II)
5) оксид алюминия

Запишите в поле ответа номера выбранных веществ.

Решение

Ацетальдегид взаимодействует с этанолом с образованием полуацеталя:

Ацетальдегид также реагирует с гидроксидом меди (II) с образованием кирпично-красного осадка оксида меди (I):

Ответ: 24


Задание 14.5

Из предложенного перечня выберите два вещества, с которыми реагирует пропанол-1.

1) калий
2) этан
3) пентен-2
4) оксид алюминия
5) хлороводород

Запишите в поле ответа номера выбранных веществ.

Решение

Пропанол-1 взаимодействует с калием с образованием алкоголята:

Пропанол-1 также реагирует с хлороводородом с образованием хлорпропана:

Ответ: 15


Задание 14.6

Из предложенного перечня выберите два вещества, с которыми реагирует фенол.

1) этан
2) гидроксид натрия
3) изобутилен
4) азотная кислота
5) оксид алюминия

Запишите в поле ответа номера выбранных веществ.

Решение

Фенол взаимодействует с гидроксидом натрия с образованием фенолята натрия:

Фенол также реагирует с азотной кислотой с образованием 2,4,6-тринитрофенола (пикриновой кислоты):

Ответ: 24


Задание 14.7

Из предложенного перечня выберите два вещества, с которыми реагирует метанол.

1) карбонат натрия (р-р)
2) пропан
3) хлороводород
4) хлорид калия (р-р)
5) оксид меди (II)

Запишите в поле ответа номера выбранных веществ.

Решение

Метанол взаимодействует с хлороводородом с образованием хлорметана:
CH3-OH + HCl = CH3Cl + H2O

Метанол также реагирует с оксидом меди (II) с образованием формальдегида (метаналя):
CH3-OH + CuO = HC(O)H + Cu + H2O

Ответ: 35


Задание 14.8

Из предложенного перечня выберите два вещества, с которыми реагирует муравьиная кислота.

1) гидроксид натрия
2) карбонат кальция
3) сульфат меди (II)
4) хлорид кальция
5) оксид углерода (II)

Запишите в поле ответа номера выбранных веществ.

Решение

Муравьиная кислота взаимодействует с гидроксидом натрия с образованием формиата натрия (реакция нейтрализации):
HC(O)OH + NaOH = HC(O)ONa + H2O

Муравьиная кислота также реагирует с карбонатом кальция с образованием формиата кальция:
2HC(O)OH + CaCO3 = (HC(O)O)2Ca + CO2↑ + H2O

Ответ: 12


Задание 14.9

Из предложенного перечня выберите два вещества, которые образуются при гидролизе метилацетата.

1) этанол
2) метанол
3) метан
4) уксусная кислота
5) муравьиная кислота

Запишите в поле ответа номера выбранных веществ.

Решение

Метилацетат (метиловый эфир уксусной кислоты) является сложным эфиром, при гидролизе которого образуются исходные кислота (уксусная кислота) и спирт (метанол):
CH3-C(O)O-CH3 + H2O = CH3-C(O)OH + CH3OH

Ответ: 24


Задание 14.10

Из предложенного перечня выберите два вещества, с которыми не реагирует фенол.

1) азотная кислота
2) гидроксид калия (р-р)
3) этан
4) соляная кислота
5) бромная вода

Запишите в поле ответа номера выбранных веществ.

Решение

Фенол нитруется азотной кислотой, нейтрализуется раствором гидроксида калия, взаимодействует с бромной водой. Фенол не реагирует с этаном и соляной кислотой.

Ответ: 34


Задание 14.11

Из предложенного перечня выберите два вещества, которые образуются при гидролизе метилпропионата.

1) метанол
2) муравьиная кислота
3) пропан
4) пропанол-1
5) пропановая кислота

Запишите в поле ответа номера выбранных веществ.

Решение

Метилпропионат (метиловый эфир пропановой кислоты) является сложным эфиром, при гидролизе которого образуются исходные кислота (пропановая кислота) и спирт (метанол):
CH3-CH2-C(O)O-CH3 + H2O = CH3-CH2-C(O)OH + CH3OH

Ответ: 15

Химические свойства альдегидов и кетонов

Химические свойства альдегидов и кетонов определяются тем, что в состав их молекул входит карбонильная группа с полярной двойной связью >C=O.

1. Высокая полярность связи С=О вызывает на карбонильном атоме углерода значительный дефицит электронной плотности (Cδ+), и по этому атому углерода возможна нуклеофильная атака. При этом, взаимодействие с нуклеофилами приводит к разрыву π-связи и образованию более прочной σ-связи.

2. Высокая полярность связи С=О вызывает на атоме углерода, соседнем с карбонильной группой (α-углеродном атоме), повышенную полярность связи С-Н α-углеродного атома. Это характеризует данные соединения как СН-кислоты.

Для альдегидов и кетонов наиболее характерны реакции, протекающие по механизму нуклеофильного присоединения (AN).

Реакционная способность в таких реакциях уменьшается от альдегидов к кетонам:

Самый активный из альдегидов – формальдегид Н2СО.

Сравнение реакционной способности альдегидов и кетонов

При сравнении реакционной способности альдегидов и кетонов необходимо учесть 2 фактора: электронный и пространственный.

Альдегиды более реакционноспособны, чем кетоны. Кетоны реагируют обычно в более жестких условиях, чем альдегиды, а в некоторые реакции даже и не вступают.

Электронный фактор связан с величиной положительного заряда на карбонильном атоме углерода и влиянием на него электронодонорных эффектов заместителей R и R'.

В молекулах кетонов на карбонильный атом углерода действуют индуктивные эффекты двух углеводородных радикалов R и R', а в молекулах альдегидов одного радикала R, поэтому в случае кетонов величина положительного заряда на этом атоме меньше.

Следовательно, взаимодействие кетонов с нуклеофилами протекает труднее.

Пространственный фактор связан с доступностью реакционного центра (Cδ+) для нуклеофильной атаки, а это зависит от размеров заместителей R и R'.

В молекулах альдегидов (содержат один радикал R) карбонильный атом углерода оказывается более доступен по сравнению с кетонами, поэтому  нуклеофильные реакции для альдегидов протекают легче, чем для кетонов.

Реакционная способность карбонильных соединений определяется величиной частичного положительного заряда δ+ на атоме углерода в карбонильной группе. Чем этот заряд больше, тем выше химическая активность карбонильного соединения.

  1. Углеводородные радикалы у группы С=О увеличивают пространственные препятствия присоединению к карбонильному атому углерода новых атомов или атомных групп.
  2. Углеводородные радикалы за счет +I-эффекта уменьшают положительный заряд на атоме углерода карбонильной группы, что затрудняет присоединение нуклеофильного реагента.

Для карбонильных соединений характерны реакции:

  • присоединение по карбонильной группе;
  • реакции замещения у α-углеродного атома;
  • полимеризация;
  • поликонденсация;
  • окисление.

Химические свойства альдегидов (таблица)

Химические свойства альдегидов и кетонов (таблица)

Химические свойства альдегидов на примере ацетальдегида

Реакции присоединения

Присоединение большинства реагентов по двойной связи С=О происходит как ионная реакция по механизму нуклеофильного присоединения AN.



1. Гидрирование (восстановление)

Реакцию восстановления альдегидов и кетонов широко используют для получения спиртов. Присоединение водорода по кратной связи С=О происходит при нагревании в присутствии катализаторов (Ni, Pt, Pd).

В результате образуются спирты соответствующего строения. Гидрирование альдегидов приводит к образованию первичных спиртов, гидрирование кетонов – ко вторичным.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, а при гидрировании ацетона – пропанол-2:

В лабораторных условиях для восстановления альдегидов и кетонов используется алюмогидрид лития (тетрагидроалюминат лития) LiAlH4:

2. Присоединение циановодородной (синильной) кислоты НСN

Альдегиды и кетоны, взаимодействуя с синильной кислотой, образуют циангидрины – органические соединения, молекулы которых содержат две функциональные группы: циано-группу  и гидроксильную –ОН.

Присоединение идет в соответствии с распределением электронной плотности в молекулах:

Образовавшееся соединение содержит на один атом углерода больше, чем исходный альдегид или кетон, поэтому подобные реакции используют для удлинения углеродной цепи. А также для получения α-гидроксикислот R-CH (COOH) OH:

Циангидрин CH3CH(CN) — OH  —  яд! Он содержится в ядрах косточек вишен, слив, персика.

Циангидрины используют как промежуточные соединения в синтезах окси- и аминокислот. Некоторые циангидрины встречаются в растениях. Употребление таких растений в пищу может привести к тяжелым отравлениям вследствие высвобождения синильной кислоты в организме.

3. Взаимодействие со спиртами (в присутствии кислоты или основания как катализатора)

Альдегиды могут взаимодействовать с одной или двумя молекулами спирта, образуя соответственно полуацетали или ацетали.


Полуацетали — соединения, содержащие при одном атоме углерода гидроксильную и алкоксильную (ОR) группы.


Ацетали – это соединения, содержащие при одном атоме углерода две алкоксильные группы.


Присоединение спиртов с образованием полуацеталей:

Например:

Гидроксильная группа полуацеталей (полуацетальный гидроксил) очень реакционноспособна. Взаимодействие полуацеталя с еще одной молекулой спирта (в присутствии кислоты) приводит к замещению полуацетального гидроксила на алкоксильную группу OR' и образованию ацеталя:

Например:

Ацетали обладают приятным цветочным ароматом. Именно образованием ацеталей обусловлен букет выдержанных вин.

Ацеталь, полученный из масляного альдегида и поливинилового спирта, используется в качестве клея при изготовлении безосколочных стекол.

Кетоны в этих условиях кетали не образуют.

4. Гидратация (присоединение воды)

Альдегиды в водных растворах существуют в виде гидратных форм, образующихся в результате присоединения воды к карбонильной группе:

Эта реакция возможна только для формальдегида и уксусного альдегида.

Кетоны не реагируют с водой.

5. Присоединение реактива Гриньяра — образование спиртов

При добавлении раствора галогеналкана в  диэтиловом эфире к магниевой стружке легко происходит экзотермическая реакция, магний переходит в раствор и образуется реактив Гриньяра.

а) Взаимодействием реактива Гриньяра с формальдегидом можно получить первичный спирт (кроме метанола). Для этого продукт присоединения реактива Гриньяра гидролизуют с водой:

б) При использовании любых других алифатических альдегидов могут быть получены вторичные спирты:

в) Взаимодействием реактивов Гриньяра с кетонами получают третичные спирты:

6. Присоединение гидросульфита натрия NaHSO3с образованием гидросульфитных производных альдегидов

Качественная реакция на альдегидную группу! 

Альдегиды при встряхивании с концентрированным раствором гидросульфита натрия образуют кристаллические соединения:

С помощью этой реакции выделяют альдегиды из смесей с другими веществами и для получения их в чистом виде.

7. Взаимодействие с аммиаком

При взаимодействии с аммиаком образуются имины:

Реакции окисления

В молекулах альдегидов атом углерода карбонильной группы, имеющий избыточный положительный заряд, притягивает к себе электроны связи С-Н. Вследствие этого атом водорода приобретает большую реакционную активность, что проявляется в способности альдегидов к окислению.

Альдегиды легко окисляются в соответствующие карбоновые кислоты под действием таких мягких окислителей, как оксид серебра и гидроксид меди (II). Окисление происходит по связи С-Н в альдегидной группе –СН=О, которая превращается при этом в карбоксильную группу –С(ОН)=О.

1. Реакция «серебряного зеркала» - окисление аммиачным раствором оксида серебра (реактив Толленса)

Качественная реакция на альдегидную группу! 

Упрощенно

Металлическое серебро осаждается на стенках пробирки в виде тонкого слоя, образуя зеркальную поверхность.

Видеоопыт «Реакция «серебряного зеркала»

Реакцию «серебряного зеркала» широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

Кетоны не вступают в эту реакцию.

2. Окисление гидроксидом меди (II)

Качественная реакция на альдегидную группу!

Для реакции используют свежеприготовленный Cu (ОН)2, образующийся при взаимодействии растворимой соли меди (II) со щелочью.

Го­лу­бая сус­пен­зия гид­рок­си­да меди (II) при на­гре­ва­нии с аль­де­ги­дом при­об­ре­та­ет окрас­ку оранжево-крас­ного оса­дка ок­си­да меди (I):

Например:

Альдегид окисляется до соответствующей ему карбоновой кислоты.

Видеоопыт «Качественная реакция на альдегиды с гидроксидом меди (II)»

Кетоны в эту реакцию не вступают.

3. Реакция на альдегиды с фуксиносернистой кислотой

Качественная реакция на альдегидную группу! 

Краситель красного цвета — фуксин, при насыщении его раствора газообразным сернистым ангидридом (SO2) образует бесцветный раствор фуксиносернистой кислоты. Этот реактив при взаимодействии с альдегидами дает красно-фиолетовое окрашивание, что является качественной реакцией на альдегидную группу.

Видеоопыт «Качественная реакция на альдегиды с фуксинсернистой кислотой»

Кетоны не вступают в эту реакцию.

Кетоны окисляются с трудом лишь при действии более сильных окислителей и повышенной температуре. При этом происходит разрыв С–С-связей (соседних с карбонилом) и образование смеси карбоновых кислот с более короткой углеродной цепью: 

Например:

4. Окисление перманганатом калия

Альдегиды можно окислить подкисленным раствором перманганат калия КMnO4 при нагревании:   

Происходит обесцвечивание раствора. Альдегидная группа окисляется до карбоксильной, т.е. альдегид окисляется до соответствующей ему карбоновой кислоты.

Муравьиный альдегид (формальдегид) окисляется до углекислого газа, потому что соответствующая ему муравьиная кислота неустойчива к действию сильных окислителей:

Для кетонов эта реакция не имеет практического значения, так как происходит разрушение молекулы и в результате получается смесь продуктов.

5. Горение (полное окисление)

Альдегиды и кетоны сгорают до углекислого газа и воды:

Реакции замещения

1. α -Галогенирование

Альдегиды и кетоны легко вступают в реакцию с галогенами (Cl2, Br2, I2) с образованием ɑ-галогенпроизводных.

Такой эффект наблюдается только для ɑ-атома углерода, т.е атома, следующего за альдегидной группой, независимо от длины углеродного радикала.

Галогенопроизводные альдегидов и кетонов проявляют слезоточивое действие и называются лакриматорами.

При избытке галогена замещению подвергаются все атомы водорода при ɑ-углеродном атоме:

Хлораль обладает снотворным действием. На основе хлораля получают средства борьбы с насекомыми (инсектициды), в том числе хлорофос, а также различные гербициды.

При растворении хлораля в воде образуется хлоралгидрат ССl3CH (OH)2.

2. Галоформная реакция (иодоформная реакция, или проба Люголя)

Качественная реакция на метилкетоны и ацетальдегид!

Иодоформная реакция – обработка карбонильного соединения избытком иода в присутствии щелочи. Выпадение желтого осадка иодоформа указывает на наличие в исходном соединении метильной группы, связанной с карбонилом:

Иодоформ широко используется как антисептик в медицине и ветеринарии.

Реакции полимеризации

Полимеризация — частный случай реакций присоединения — характерна в основном для альдегидов.

1. Линейная полимеризация

При испарении или длительном стоянии 40% водного раствора формальдегида (формалина) образуется полимер формальдегида в виде белого осадка с невысокой молекулярной массой – параформ:

Параформ используют для изготовления волокон, пленок и других изделий.

2. Циклическая полимеризация (тримеризация, тетрамеризация)

При взаимодействии молекул альдегидов возможно также образование циклических соединений.

а) Тример метаналя получается при перегонке подкисленного раствора формальдегида: 

Триоксан используется для получения полиформальдегида (полиоксиметилена) с высокой молекулярной массой, обладающего повышенной стабильностью и механической прочностью.

б) Полимеризация ацетальдегида в присутствии следов серной кислоты приводит к образованию в зависимости от условий двух циклических продуктов — паральдегида и метальдегида. Паральдегид образуется, если реакцию проводить при 200С, а метальдегид — при 00С:

Паральдегид — жидкость (т. кип. 1280С), метальдегид — твердое вещество, используется в быту как сухое горючее под названием «сухой спирт».

Реакции поликонденсации

Конденсацией называется реакция, приводящая к усложнению углеродного скелета и возникновению новой углеродной связи, причем из двух или более относительно простых молекул образуется новая, более сложная молекула. Обычно в результате реакции конденсации выделяется молекула воды или другого вещества.

Конденсация, приводящая к образованию высокомолекулярных соединений, называется реакцией поликонденсации.

1. Конденсация с фенолами

Практическое значение имеет реакция формальдегида с фенолом (катализаторы — кислоты или основания).

Вначале в присутствии катализатора происходит взаимодействие между молекулой формальдегида и молекулой фенола с образованием фенолспирта:

Для фенола эта реакция электрофильного замещения (SE), а для формальдегида – нуклеофильного присоединения (АN).

Образовавшееся соединение взаимодействует далее с фенолом с выделением молекулы воды:   

Новое соединение взаимодействует с формальдегидом:

Это соединение конденсируется с фенолом, затем снова с формальдегидом и т.д.

В результате поликонденсации фенола с формальдегидом в присутствии катализаторов образуются фенолформальдегидные смолы, из которых получают пластмассы – фенопласты.

Фенопласты – важнейшие заменители цветных и черных металлов во многих отраслях промышленности. Из них изготавливают большое количество изделий широкого потребления, электроизоляционные материалы и строительные детали.

2. Конденсация альдегидов с карбамидом (мочевиной) (NH2)2C=O получение карбамидных (мочевино-формальдегидных) смол

Например:

Видеоопыт «Поликонденсация формальдегида и мочевины (получение пенопласта)»

3. Конденсация формальдегида с меламином С3Н6N6(меламино-формальдегидные смолы)

Меламино-формальдегидные смолы применяют для пропитки бумаги, картона и тканей с целью придания им водостойкости, несминаемости и снижения усадки.

Важно! Посуда, изготовленная из меламино-формальдегидных полимеров (неправильно называемых «меламином»), обычно ярко оформлена, токсична и очень опасна для здоровья.


4. Альдольно-кротоновая конденсация

При альдольной конденсации происходит присоединение одной молекулы карбонильного соединения к другой молекуле, образуется альдегидоспирт (альдоль) или кетоноспирт (кетол).

Например, уксусный альдегид на холоду при действии разбавленных растворов щелочей превращается в альдоль:

Альдольная конденсация широко используется в промышленности для получения синтетических каучуков, смол, лаков и различных душистых веществ.

При кротоновой конденсации образуется молекула непредельного альдегида или кетона. Химическая реакция сопровождается выделением молекулы воды.

Реакция проводится в более жестких условиях (при нагревании или в присутствии кислоты) альдоль дегидратируется с образованием кротонового альдегида:

Легкое отщепление воды от альдоля объясняется подвижностью водородного атома в α-звене, на которое действует I-эффекты двух групп (ОН и С=О).

Соединения, содержащие третичный углеродный атом возле карбонильной группы не вступают в реакцию альдольной конденсации.

Впервые эти конденсации осуществили одновременно (1872 г.) и независимо друг от друга А.П. Бородин и Ш.А. Вюрц.

Реакции диспропорционирования

Реакция Канниццаро

Важной в промышленности реакцией самоокисления-самовосстановления является реакция Канниццаро.

Альдегиды, не содержащие атом водорода у α-углеродного атома, в щелочной среде способны вступать в окислительно-восстановительную реакцию (диспропорционирования):

Одна молекула альдегида при этом окисляется до карбоновой кислоты, а другая молекула восстанавливается до спирта.

Альдегиды и кетоны

Задания 14. Характерные химические свойства кислородсодержащих соединений.

Задание №1

Из предложенного перечня выберите два вещества, с которыми реагирует формальдегид.

  • 1. Cu
  • 2. N2
  • 3. H2
  • 4. Ag2O (NH3 р-р)
  • 5. CH3OCH3

Запишите в поле ответа номера выбранных веществ.

Решение

Ответ: 34

Формальдегид относится к классу альдегидов – кислородсодержащих органических соединений, имеющих на конце молекулы альдегидную группу:

Типичными реакциями альдегидов являются реакции окисления и восстановления, протекающие по функциональной группе.

Среди перечня ответов для формальдегида характерны реакции восстановления, где в качестве восстановителя используется водород (кат. – Pt, Pd, Ni), и окисления – в данном случае реакция серебряного зеркала.

При восстановлении водородом на никелевом катализаторе формальдегид превращается в метанол:

Реакция серебряного зеркала – это реакция восстановления серебра из аммиачного раствора оксида серебра. При растворении в водном растворе аммиака оксид серебра превращается в комплексное соединение – гидроксид диамминсеребра (I) [Ag(NH3)2]OH. После добавления формальдегида протекает окислительно-восстановительная реакция, в которой серебро восстанавливается:

Задание №2

Из предложенного перечня выберите два вещества, с которыми реагирует уксусный альдегид.

1) аммиачный раствор оксид серебра (I)

2) оксид кальция

3) кислород

4) гидроксид натрия

5) серебро

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №3

Из предложенного перечня выберите два вещества, с которыми реагирует этанол.

1) гидроксид меди (II)

2) гидроксид бария

3) натрий

4) соляная кислота

5) циклобутан

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №4

Из предложенного перечня выберите два вещества, которые взаимодействуют и с формальдегидом, и с муравьиной кислотой и превращают их в углекислый газ.

  • 1. O2
  • 2. Ag2O (NH3)
  • 3. H2
  • 4. NaOH
  • 5. NaHCO3

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №5

Из предложенного перечня выберите два вещества, которые взаимодействуют со щелочью и металлическим натрием.

1) метанол

2) диметиловый эфир

3) фенол

4) толуол

5) муравьиная кислота

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №6

Из предложенного перечня выберите два вещества, которые взаимодействуют с глицерином.

1) бензол

2) азотная кислота

3) диэтиловый эфир

4) водород

5) гидроксид меди (II)

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №7

Из предложенного перечня выберите два вещества, которые взаимодействуют с муравьиной кислотой.

  • 1. Cu
  • 2. CuO
  • 3. Ag2O (NH3 р-р)
  • 4. Ag
  • 5. CuSO4

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №8

Из предложенного перечня выберите два вещества, из которых в одну стадию можно получить бутадиен-1,3.

1) этанол

2) бутанол

3) бутаналь

4) бутан

5) этаналь

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №9

Из предложенного перечня выберите две схемы реакций, в результате которых можно получить пропанол-1.

  • 1. CH3CH2CHO + H2 →
  • 2. CH3CH2CHO + Cu(OH)2 →
  • 3. CH3CH2Cl + H2O →
  • 4. CH3CH2CHO + [Ag(NH3)2OH] →
  • 5. CH3CH2CH2Cl + KOH →

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №10

Из предложенного перечня выберите два вещества, которые взаимодействуют с гидроксидом натрия.

  • 1. CH2=CH2
  • 2. CH3-O-CH3
  • 3. CH3-CH2-OH
  • 4. CH3-CH2-COOH
  • 5. C6H5OH

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №11

Из предложенного перечня выберите две реакции, которые происходят с разрывом связи O-H у спиртов.

  • 1. C2H5OH → C2H4 + H2O
  • 2. 2CH3OH + 2K → 2CH3OK + H2
  • 3. C2H5OH + CH3COOH → CH3COOC2H5 + H2O
  • 4. C2H5OH + HBr → C2H5Br + H2O
  • 5. C2H5OH + NH3 → C2H5NH2 + H2O

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №12

Из предложенного перечня выберите две реакции, в которые, в отличие от метанола, вступает фенол.

1) взаимодействие с литием

2) реакция поликонденсации

3) окисление до альдегида

4) реакция этерификации

5) взаимодействие с хлоридом железа (III)

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №13

Из предложенного перечня выберите две реакции, в результате которых можно получить уксусную кислоту.

1) гидролиз этилацетата

2) восстановление этаналя

3) гидратация этилена

4) гидратация ацетилена

5) окисление бутана

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №14

Из предложенного перечня выберите две реакции, которые характерны для сложных эфиров.

1) гидратация

2) этерификация

3) дегидрирование

4) гидролиз

5) горение

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №15

Из предложенного перечня выберите два вещества, с которыми может реагировать этанол.

1) гидроксид натрия

2) бромоводород

3) метанол

4) этан

5) гидроксид меди (II)

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №16

Из предложенного перечня выберите два вещества, которые взаимодействуют и с гидроксидом калия, и с хлором.

1) бутан

2) 2-бромфенол

3) бутен-2

4) 2-метилбутановая кислота

5) толуол

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №17

Из предложенного перечня выберите два вещества, при взаимодействии которых со щелочами образуются соли.

1) пропионовая кислота

2) ацетат натрия

3) пропаналь

4) этилацетат

5) пентанол-2

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №18

Из предложенного перечня выберите два вещества, которые при обычных условиях взаимодействуют с этиленгликолем.

1) оксид меди (II)

2) водород

3) гидроксид меди

4) калий

5) гидроксид алюминия

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №19

Из предложенного перечня выберите два спирта, которые нельзя получить гидратацией алкенов.

1) этанол

2) этандиол-1,2

3) пропанол-2

4) пентанол-3

5) метанол

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №20

Из предложенного перечня выберите две реакции, в которые вступают и пропаналь, и ацетон.

1) гидрирование

2) окисление гидроксидом меди (II)

3) горение

4) реакция "серебряного зеркала"

5) этерификация

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №21

Из предложенного перечня веществ выберите два таких, с которыми фенол не реагирует:

  • 1. Br2
  • 2. FeCl3
  • 3. Cu
  • 4. HNO3
  • 5. HBr

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №22

Из предложенного перечня веществ выберите два вещества, с которыми, в отличие от этанола, взаимодействует фенол.

1) натрий

2) кислород

3) бромоводород

4) бромная вода

5) хлорид железа(III)

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №23

Из предложенного перечня веществ выберите два вещества, с которыми взаимодействует муравьиная кислота.

1) метан

2) метанол

3) толуол

4) медь

5) оксид меди(II)

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №24

Из предложенного перечня веществ выберите два вещества, с которыми не взаимодействует фенол.

  • 1. NaHCO3
  • 2. HCHO
  • 3. Cu
  • 4. FeCl3
  • 5. HNO3

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №25

Из предложенного перечня веществ выберите два вещества, с которыми не взаимодействует фенол.

  • 1. Br2
  • 2. HBr
  • 3. CO2
  • 4. K
  • 5. KOH

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №26

Из предложенного перечня веществ выберите два вещества, которые могут быть продуктами взаимодействия этанола с концентрированной серной кислотой при нагревании.

1) этилен

2) ацетилен

3) этаналь

4) этилацетат

5) диэтиловый эфир

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №27

Из предложенного перечня веществ выберите два вещества, с которыми взаимодействует ацетальдегид.

1) медь

2) водород

3) оксид цинка

4) нитрат калия

5) перманганат калия

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №28

Из предложенного перечня веществ выберите два вещества, с которыми взаимодействует фенол.

1) соляная кислота

2) азотная кислота

3) гидроксид натрия

4) сульфат натрия

5) железо

Запишите в поле ответа номера выбранных веществ.

Решение

Задание №29

Из предложенного перечня веществ выберите два вещества, которые подвергаются гидролизу.

1) рибоза

2) сахароза

3) фруктоза

4) крахмал

5) глюкоза

Запишите в поле ответа номера выбранных веществ.

Решение

Формальдегид — Википедия

Формальдегид
Общие
Сокращения формальдегид
Традиционные названия муравьиный альдегид, метаналь
Хим. формула CH2O
Рац. формула HCHO
Физические свойства
Состояние газ с острым запахом
Молярная масса 30,03 г/моль
Плотность 0,8153 г/см³ (-20 °C)
Энергия ионизации 10,88 ± 0,01 эВ[1]
Термические свойства
Т. плав. -118 °C
Т. кип. −19 °C
Пр. взрв. 7 ± 1 об.%[1]
Энтальпия образования −115,9 кДж/моль
Давление пара 1 ± 1 атм[1]
Классификация
Рег. номер CAS 50-00-0
PubChem 712
Рег. номер EINECS 200-001-8
SMILES
InChI
Кодекс Алиментариус E240
RTECS LP8925000
ChEBI 16842
Номер ООН 2209
ChemSpider 692
Безопасность
ЛД50 100 мг/кг (крысы, орально)
Токсичность

высокотоксичен, канцерогенен, ирритант, контаминант, поражает зрительный нерв

NFPA 704
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Формальдеги́д (от лат. formīca «муравей») — органическое соединение, бесцветный газ с резким запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритант, контаминант, канцероген, токсичен.

Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид метанола и муравьиной кислоты.

Физические свойства

Величина Значение
Ст. энергия Гиббса образования ΔG −110 кДж/моль (г)
Ст. энтропия образования S 218,66 Дж/моль·K (г)
Ст. мольная теплоёмкость Cp 35,35 Дж/моль·K (г)
Энтальпия кипения ΔHкип 23,3 кДж/моль

Химические свойства

Из-за низкой электронной плотности на атоме углерода формальдегид легко вступает в реакции даже со слабыми нуклеофилами. Этим, в частности, объясняется тот факт, что в водных растворах формальдегид находится в гидратированной форме.

Формальдегид вступает во все реакции, характерные для алифатических альдегидов. В частности, в реакции с нуклеофилами и восстановительными реагентами.

Окисление формальдегида различными реагентами:

5HCHO+4KMnO4+6h3SO4→4MnSO4+2K2SO4+5CO2+11h3O{\displaystyle {\mathsf {5HCHO+4KMnO_{4}+6H_{2}SO_{4}\rightarrow 4MnSO_{4}+2K_{2}SO_{4}+5CO_{2}+11H_{2}O}}}
HCHO+2Cu(OH)2→HCOOH+Cu2O+2h3O{\displaystyle {\mathsf {HCHO+2Cu(OH)_{2}\rightarrow HCOOH+Cu_{2}O+2H_{2}O}}}
HCHO+4[Ag(Nh4)2]OH→(Nh5)2CO3+4Ag+6Nh4+2h3O{\displaystyle {\mathsf {HCHO+4[Ag(NH_{3})_{2}]OH\rightarrow (NH_{4})_{2}CO_{3}+4Ag+6NH_{3}+2H_{2}O}}}

Реакция с фенолом с образованием фенолформальдегидных смол[2]:

HCHO+2C6H5OH→HOC6h5Ch3C6h5OH+h3O{\displaystyle {\mathsf {HCHO+2C_{6}H_{5}OH\rightarrow HOC_{6}H_{4}CH_{2}C_{6}H_{4}OH+H_{2}O}}}

Получение

Основной промышленный метод получения формальдегида — окисление метанола:

2Ch4OH+O2→2HCHO+2h3O{\displaystyle {\mathsf {2CH_{3}OH+O_{2}\rightarrow 2HCHO+2H_{2}O}}}

Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %[3].

Процесс дегидрирования метанола, осуществлённый на цинк-медных катализаторах при 600 °C, пока не получил широкого развития, однако он является очень перспективным, поскольку позволяет получать формальдегид, не содержащий воды.

Существует также промышленный способ получения формальдегида окислением метана:

Ch5+O2→HCHO+h3O{\displaystyle {\mathsf {CH_{4}+O_{2}\rightarrow HCHO+H_{2}O}}}

Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4.

Применение

Водный раствор формальдегида (метандиол), стабилизированный метанолом, — формалин — вызывает денатурацию белков, поэтому он применяется в качестве дубителя в кожевенном производстве и дубления желатина при производстве кинофотоплёнки. Из-за сильного дубящего эффекта формальдегид является также сильным антисептиком, это свойство формалина используется в медицине (формидрон, Формагель и подобные препараты) и для консервации биологических материалов (создание анатомических и других препаратов).

Формальдегид применяется в качестве средства фумигации, в частности при хранении и транспортировке зерна.

Водный раствор формальдегида (метандиол), стабилизированный карбамидом, — КФК — является одним из важнейших источников формальдегида и карбамида в производстве карбамидоформальдегидных, меламинокарбамидоформальдегидных смол и для обработки карбамида против слеживаемости; применяется в деревообрабатывающей и мебельной промышленности для производства фанеры, ДСП и т. д.

Основная часть формальдегида идёт на изготовление полимеров-реактопластов (фенолформальдегидные, карбамидформальдегидные и меламинформальдегидные смолы), он широко используется также в промышленном органическом синтезе (пентаэритрит, триметилолпропан и т. д.).

При хранении (при температуре ниже 9 °С) раствор формальдегида мутнеет, выпадает белый осадок (параформальдегид).

В пищевой промышленности зарегистрирован под кодом E240[4].

Использование формальдегида в составе косметических средств

Директивой 76/768 ЕЭС допускается применение формальдегида в качестве консерванта в количестве до 0,1 % в составе косметических средств, предназначенных для гигиены полости рта, и до 0,2 % в прочих косметических препаратах.

В фармакологии препараты, содержащие до 0,5 % формальдегида, применяются для снижения потливости без каких-либо ограничений, и только при применении мази, содержащей 5 % этого вещества, рекомендуется не наносить её на кожу лица.[5] Запрещается применять для консервации средств в аэрозольной упаковке, спреев. Продукция должна иметь предупреждение «содержит формальдегид», если содержание формальдегида в готовой продукции превышает 0,05 %. С точки зрения спектра противомикробной активности, формальдегид проявляет активность в отношении грамположительных, грамотрицательных бактерий, дрожжеподобных и плесневых грибов. В то же время формальдегид и парабены снижают противомикробные свойства в присутствии белков.[6] Наряду с этим установлено улучшение физико-механических свойств волоса после обработки его формалином. Кератин с формальдегидом может взаимодействовать по-разному. Формальдегид может реагировать с — S — Н группами, образуя связи — S — СН2 — S — С — Nh3 группами боковых цепей и т. д. Например, прочная связь — NH- СН образуется при взаимодействии формальдегида с амидогруппами остатков дикарбоновых кислот и аминогруппами гуанидиновых групп аргинина.[7]

В литературе сведения о влиянии разбавленных растворов формальдегида на кожу человека практически отсутствуют. Известно, что если выдержать ухо кролика в формалине (37%-й раствор формальдегида) в течение 30 минут, то оно покраснеет и начнет шелушиться, а впоследствии полностью восстановится (регенерирует).

Так как формальдегид в развитых странах используется исключительно в композиции косметических препаратов, не остающихся на коже, вероятность возникновения кожной реакции была рассчитана для случаев использования шампуня, содержащего в качестве консерванта 0,1 % формальдегида. Расчет показал, что нежелательная кожная реакция при применении такого шампуня возникнет только у 1 человека из 75 000. При этом в действительности эта цифра будет ещё менее значимой, поскольку при проведении расчетов не учитывался ряд факторов, не поддающихся точному учету, но неопровержимо снижающих эту вероятность. Во-первых, расчет основывался на базовых данных по содержанию формальдегида непосредственно на коже человека. При мытье волос в непосредственном контакте с кожей находится лишь незначительная часть формальдегида, находящегося в шампуне. Во-вторых, в связи с невысокой стойкостью формальдегида в водных растворах (испарение), его концентрация с течением времени понижается.[5]

Безопасность и токсические свойства

Категория взрывоопасности IIB по ГОСТ Р 51330.11-99, группа взрывоопасности Т2 по ГОСТ Р 51330.5-99. Концентрационные пределы воспламенения 7-73 % об.; Класс опасности II (высокоопасные)[8] ; температура самовоспламенения — 435 °C.

Формальдегид образуется в организме путём окисления метанола.

Обладает токсичностью, негативно воздействует на генетический материал, репродуктивные органы, дыхательные пути, глаза, кожный покров. Оказывает сильное действие на центральную нервную систему.

Предельно допустимые концентрации (ПДК) формальдегида:[9][10][11]

С 25 мая 2014 г. вступило в силу Постановление Главного государственного санитарного врача Российской Федерации, согласно которому установлены следующие значения ПДКм.р. = 0,5 мг/м³, ПДКс.с. = 0,1 мг/м³[8]

Смертельная доза 40 % водного раствора формальдегида (формалина) составляет 10—50 г.

Воздействие на организм и симптомы хронического отравления

Формальдегид токсичен: приём внутрь 60-90 мл является смертельным. Симптомы отравления: бледность, упадок сил, бессознательное состояние, депрессия, затруднённое дыхание, головная боль, нередко судороги.

При остром ингаляционном отравлении: конъюнктивит, острый бронхит, вплоть до отёка лёгких. Постепенно нарастают признаки поражения центральной нервной системы (головокружение, чувство страха, шаткая походка, судороги). При отравлении через рот: ожог слизистых оболочек пищеварительного тракта (жжение, боль в глотке, по ходу пищевода, в желудке, рвота кровавыми массами, понос), геморрагический нефрит, анурия. Возможны отёк гортани, рефлекторная остановка дыхания.

Хроническое отравление у работающих с техническим формалином проявляется похудением, диспепсическими симптомами, поражением центральной нервной системы (психическое возбуждение, дрожание, атаксия, расстройства зрения, упорные головные боли, плохой сон). Описаны органические заболевания нервной системы (таламический синдром), расстройства потоотделения, температурная асимметрия. Отмечены случаи бронхиальной астмы.

В условиях воздействия паров формалина (например, у рабочих, занятых изготовлением искусственных смол), а также при непосредственном контакте с формалином или его растворами наблюдаются, в особенности в первые дни работы, выраженные дерматиты лица, предплечий и кистей, поражения ногтей (их ломкость, размягчение). Возможны дерматиты и экземы аллергического характера. После перенесённого отравления чувствительность к формалину повышается. Имеются сведения о неблагоприятном влиянии на специфические функции женского организма[12][13].

Канцерогенность

Формальдегид внесён в список канцерогенных веществ ГН 1.1.725—98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[14][15][16].

Примечания

  1. 1 2 3 http://www.cdc.gov/niosh/npg/npgd0293.html
  2. ↑ The Preparation of Organic Compounds (англ.)
  3. Weissermel, Klaus. Industrial organic chemistry. — Wiley-VCH, 2003. — P. 38-40. — ISBN 9783527305780.
  4. ↑ E240. Медицинский портал Zdorovye24.ru
  5. 1 2 О консервантах без предрассудков
  6. ↑ Принципы подбора консервантов для косметической продукции
  7. ↑ Изменения кератина при действии формальдегида, солей металлов и красителей
  8. 1 2 Постановление Главного государственного санитарного врача Российской Федерации от 7 апреля 2014 г. N 27 г. Москва "О внесении изменения N 10 в ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест»
  9. ↑ s:Гигиенические нормативы ГН 2.2.5.1313—03. «Предельно допустимые концентрации (ПДК) вредных веществ воздухе рабочей зоны»
  10. ↑ s:Гигиенические нормативы ГН 2.1.6.1338—03. «Предельно допустимые концентрации (ПДКр) загрязняющих веществ в атмосферном воздухе населённых мест»
  11. ↑ s:Гигиенические нормативы ГН 2.1.5.1315—03. «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»
  12. ↑ Медицинский информационный сервер. Отравление формальдегидом
  13. В. Ф. Крамаренко. Токсикологическая химия. — К.: Выща шк., 1989. — 447 с. — 6 000 экз. — ISBN 5-11-000148-0.
  14. ↑ Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека, Прил. 2 к нормативам ГН 1.1.725—98 от 23 декабря 1998 г. № 32
  15. ↑ Этот же перечень, Лаборатория аналитической экотоксикологии института проблем экологии и эволюции им. А. Н. Северцова РАН
  16. ↑ Территориальное управление Роспотребнадзора по Тульской области

Ссылки

влияние на организм человека при вдыхании, кератиновом выпрямлении. Польза и вред. Симптомы отравления, лечение кожи, легких, ногтей. Применение в медицине, фармации, стоматологии, для дезинфекции

Человечество научилось применять себе на пользу даже самые опасные химикаты, которые при неконтролируемом использовании могут навредить организму и привести к смерти.

Одним из таких соединений является Формальдегид, используемый в промышленности, косметологии и фармакологии. При неправильном обращении химикат оказывает негативное влияние на организм человека и может нанести сильный вред здоровью.

Содержание записи:

Сферы применения формальдегида

Формальдегид является токсичным газообразным веществом с резким запахом. Преимуществом химиката является способность взаимодействовать с широким спектром других веществ: спиртовыми растворами, водой и растворителями иного типа.

Благодаря своим качествам формальдегид применяется во многих сферах:

  • Деревообработка. Химикат используется для изготовления клея, которым соединяются слои ДСП и ДВП, а также добавляется в лаки, краски и другие отделочные материалы, которые усиливают привлекательность деревянных изделий.
  • Пищевая промышленность. Формальдегид используется как консервирующее вещество, а также дезинфектор. Он широко применяется для копчения продуктов, а также для изготовления товаров из сахарной свеклы.
  • Косметология. Формальдегид добавляют в гели для душа, лаки для ногтей, а также шампуни и крема в качестве консерванта, поскольку он не позволяет развиваться патогенным микроорганизмам в косметике. Химикат выделяется и при кератиновом выпрямлении.
  • Медицина. Наиболее известным примером применения формальдегида считается формалин, который содержит 40% химиката. Стоматологи, хирурги и другие врачи дезинфицируют им инструменты и руки перед медицинскими процедурами. Также формалин используется для снижения потоотделения ног, с его помощью бальзамируют тела.
  • Фармацевтика. Формальдегид активно используется для изготовления лекарственных средств, но в небольшой концентрации и только вместе с другими веществами. На производствах с помощью химиката создают формалиновую и мазь Теймурова от потливости ног, а также лизоформ, который применяется для спринцовок.

В качестве дезинфектора и консерванта формальдегид добавляют к средствам, предназначенным для уборки помещений.

Источники выделения формальдегида

В условиях промышленности этот химикат получают из метана и метанола, но он выделяется и в естественных условиях, а именно из:

  • атмосферы;
  • табачных изделий;
  • выхлопных газов автомобилей;
  • выбросов химических и деревообрабатывающих предприятий;
  • мусоросжигательных заводов;
  • процесса горения;
  • предметов быта — окон и потолков, сделанных из ПВХ, детских игрушек, бытовой техники, канцелярских товаров, посуды, фанеры и большинства предметов мебели, особенно эконом-сегмента.

Польза соединения

Несмотря на сильную токсичность формальдегида, он может приносить и пользу, особенно в рамках фармацевтики.

Явной пользы в чистом виде газ не приносит, зато может быть полезен как:

  • консервант для косметических средств;
  • дезинфектор для обработки инструментов;
  • лекарство от повышенном выделении пота.

Негативное воздействие формальдегида на человека

Формальдегид признан частично канцерогенным веществом, поскольку прямых доказательств такого влияния на здоровье человека нет. По результатам исследований была выявлена взаимосвязь между воздействием вещества на организм человека и развитием онкологии.

Однако другие изучения не подтвердили подобное влияние химиката, поэтому Минздрав выбрал усредненную позицию, и не рекомендует использовать подобные консерванты в составе пищевых продуктов или косметике.

Если человек столкнется с формальдегидом, вред проявляется сразу же в виде:

  • кожной сыпи;
  • сильного зуда;
  • раздражения.

Длительное воздействие химиката может вызвать:

  • постоянные головные боли;
  • нарушения сна;
  • упадок сил;
  • угнетенное настроение.

При сильных проявлениях воспаляются глаза и появляются кожные болезни, в некоторых случаях повышается риск возникновения ракового заболевания.

Когда уровень формальдегида повышается слишком резко, такое состояние вызывает отек слизистых оболочек гортани, а также легких – последствия, способные привести к смерти отравившегося человека.

Если человек вдыхает формальдегид, газ обжигает внутренние органы, которые участвуют в дыхательном процессе. Попав на кожу, концентрированный формальдегид сразу же приводит к ее некрозу, а также возможно развитие печеночной или почечной недостаточности.

Кто наиболее подвержен воздействию соединения

Формальдегид (влияние на организм человека неизбежно, так как вещество используется во многих производственных сферах) постоянно присутствует в жилье и предметах быта в небольших количествах. Однако выделяют отдельные группы людей, подверженные воздействию токсину сильнее.

К ним относят:

  • промышленных работников, взаимодействующих с продуктами из формальдегида;
  • жителей территорий, которые расположены возле заводов, производящих метанол, формальдегид, мебель, лакокрасочные материалы, пластмассы;
  • сотрудников мебельных цехов;
  • служащих предприятий по изготовлению бумаги;
  • представителей электронных производств, текстильных предприятий;
  • медицинских сотрудников, занятых в моргах и учреждениях, проводящих лабораторные анализы;
  • работников похоронных заведений, в которых предоставляют услугу бальзамирования.

Ингаляционное попадание формальдегида в организм

Ингаляционный способ означает, что пары вещества проникают через дыхательные пути. Чаще всего подобный метод воздействия формальдегида встречается на производствах, где сотрудники имеют дело с его газообразным состоянием и не имеют необходимой защиты дыхательных органов.

Когда формальдегид вдыхается, сразу же страдают органы, участвующие в процессе дыхания. Первым обжигается пищевод, а пары распределяются еще и по легким, дополнительно страдают бронхи. Через некоторое время химикат достигает тканей костного мозга, слизистой кишечника и слюнных желез, страдает и лимфоидная ткань, а также поджелудочная железа. Это выражается в жжении, слабости и тошноте.

При большой концентрации формальдегида происходит сильное отравление, которое имеет следующие последствия:

  • отек гортани и легких, которые приводят к удушью;
  • нарушения кровообращения;
  • сильная боль, вызванная ожогом пищевода.

При хроническом отравлении, то есть постоянном воздействии формальдегида на человека, здоровье ухудшается постепенно. Со стороны дыхательных органов наблюдается постоянный насморк, кашель и удушье, человек чувствует хроническую усталость, впоследствии возникают отеки дыхательных органов.

Пероральное попадание вещества

Случайное проглатывание формальдегида может произойти по незнанию, поскольку раствор химиката нельзя отличить от стандартной воды. Вещество оседает преимущественно в желудке и гортани, но распределяется по всему ЖКТ.

Сразу после попадания вещества можно отметить такие симптомы отравления, как:

  • рвота с кровью;
  • сильная диарея;
  • ощущение жжения в носоглотке, к которому добавляется боль.

Как и в случае с ингаляционным попаданием в организм, пероральное может вызвать отек гортани и остановку дыхания, что требует срочного медицинского вмешательства. При неоказании квалифицированной медицинской помощи формальдегид окажет нагрузку на почки, вызвав геморрагический нефрит.

Через 12 часов после поступления в ЖКТ, формальдегид достигает костного мозга, где оказывает на него разрушающее воздействие.

Попадание формальдегида на кожу

Формальдегид (влияние на организм человека определяется симптоматикой отравления) может попасть на кожу, если кто-то работает с веществом без средств защиты или случайно прикоснулся к концентрированному химикату.

При взаимодействии кожи и формальдегида возникает химический ожог, а также появляются признаки дерматита, которые при отсутствии терапии переходят в экзему, что осложняет лечение.

Иные последствия контакта с химическим средством не менее серьезные:

  • сильная головная боль;
  • ярко выраженная слабость;
  • зуд;
  • крапивница;
  • болезни ногтей.

Влияние вещества на иммунную систему

Формальдегид (влияние на организм человека может быть пагубным) снижает иммунитет. При длительном взаимодействии с веществом иммунная система подвергается мощному удару, который приводит к различным последствиям.

Они следующие:

  • снижается концентрация лимфоцитов;
  • уменьшается уровень иммуноглобулина А;
  • учащаются случаи вирусных и простудных заболеваний;
  • развивается депрессивное состояние.

Как формальдегид влияет на репродуктивную функцию

Мужская репродуктивная функция постоянно восстанавливается, и, несмотря на губительное воздействие формальдегида на сперматозоиды, уже спустя три месяца после лечения последствия отравления исчезают. На женское здоровье химикат влияет гораздо серьезнее, и у тех женщин, которые работают с химикатом или попали под его воздействие.

Могут возникать следующие нарушения репродуктивной системы:

  • нарушается менструальный цикл;
  • при беременности может произойти выкидыш;
  • развивается альгоменорея;
  • появляются заболевания, связанные с шейкой матки;
  • наблюдается гиперменструальный синдром.

Все эти болезни лишь симптомы, свидетельствующие о проникновении формальдегида или его производных в организм. Если женщина действительно могла соприкасаться с химикатом, ей необходимо срочно обратиться к медикам.

Какая концентрация формальдегида считается неопасной

Этот химикат является газообразным, а значит, главной является его концентрация в воздухе. Допустимым показателем считается 0,001 мг/литр. В рабочих помещениях норма повышается, но не может быть выше, чем 0,005 мг/литр воздуха.

Формальдегид имеет негативное влияние на организм, при отравлении вызывает головную боль и другие явные симптомы.

При наличии таких показателей здоровью человека не наносится непоправимого вреда, но со временем он может ощущать слабые симптомы отравления. Возможность появления ракового заболевания также увеличивается.

Симптомы хронического и острого отравления

Влияние формальдегида на организм человека, постоянное оно было, или концентрация стала критической сразу, приводит к возникновению разных симптомов.

Медики разделяют отравление этим веществом на две категории: хроническую и острую, первая связана с долговременным воздействием химиката, вторая же связана с вдыханием, глотанием или соприкосновением с большой дозой вещества.

ОтравлениеСимптомы
ХроническоеСильная головная боль, бледная кожа и слизистые, постоянная слабость и потеря трудоспособности, снижение массы тела, изменение настроения, независимо от ситуации, нарушения сна, появление бронхиальной астмы, одышка.
ОстроеГоловокружение, судороги, сильная рвота с кровью, диарея, жжение в области ротоглотки и желудка, отек гортани и легких, удушье, потеря координации движений.

Первая помощь при отравлении

Если у человека возникли признаки отравления формальдегидом, необходимо:

  1. Вызвать скорую помощь.
  2. Узнать, каким путем наступило отравление.
  3. Оказать симптоматическое лечение.

До приезда врача необходимо выполнить следующие действия:

  • вынести или вывести пострадавшего из помещения и максимально отдалить от источника поражения;
  • постараться вывести яд путем вызова рвоты или промывания желудка.

Если  человек лишился сознания, необходимо дождаться врача, который использует желудочный зонд для промывания. До этого больной должен лежать на левом боку. Медики в качестве первой помощи обезвреживают формальдегид введением нашатыря через рот или зонд, также используется карбонат аммония для промывания.

Хорошо помогает активированный уголь из расчета 1 г/кг массы человека, который растворяется в 400 мл воды.

В дальнейшем уголь удаляется из желудка путем рвотной реакции. Если раствор попал на кожу или в глаза, следует сразу промыть пораженную зону очищенной водой либо использовать 5% раствор нашатыря (не применяется для обработки глаз).

Терапия отравления формальдегидом

Человеку, отравленному формальдегидом, показано лечение в больничном отделении интенсивной терапии, где задействуют целый комплекс мероприятий.

Комплекс такой:

  1. Гемодиализ — кровь пропускается через аппарат «искусственная почка», таким образом очищаясь, после чего возвращается в организм.
  2. Ускоренный диурез — в вену вводится много изотонического раствора, либо до 2 литров глюкозы, а также сразу вводится диуретик.
  3. Симптоматическое лечение — медики контролируют работу сердца и нервной системы, а при нарушениях назначают необходимые препараты.
  4. Поддержка работы печени — в организм вводятся витамины и гепатопротекторы, которые исключают неработоспособность пораженного органа.

Восстановление организма после интоксикации

После того, как отравление излечено, и организм пришел в нормальное состояние, обычно назначают комплексное обследование, чтобы выявить необратимые изменения или ухудшение состояния человека.

Чтобы снизить вред и восстановить организм, больному назначают:

  • обильное питье;
  • отмену жареной и соленой пищи;
  • регулярное проветривание жилого помещения.

При изменениях в работе внутренних органов, которые спровоцировал формальдегид, могут назначить препараты для печени, сердца, почек и легких. Химикат оказывает индивидуальное влияние на организм человека, поэтому и меры реабилитации после отравления им подбираются отдельно для каждого пациента.

Автор статьи: Екатерина Гордейчук

Оформление статьи: Лозинский Олег

Видео об влиянии формальдегида

Какой воздействие оказывает формальдегид на организм:

Ацетальдегид — Википедия

Ацетальдегид

({{{картинка}}})
Систематическое
наименование
этаналь
Традиционные названия ацетальдегид, метилформальдегид
Хим. формула СH3СHO
Рац. формула С2H4O
C 54,53 %, H 9,15 %, O 36,32 %
Состояние бесцветная жидкость, с резким запахом
Молярная масса 44,0526 ± 0,0022 г/моль
Плотность 0,784 г/см³
Динамическая вязкость ~0,215 при 20 °C
Энергия ионизации 10,22 ± 0,01 эВ[1]
Температура
 • плавления −123,37 °C
 • кипения 20,2 °C
 • вспышки −36 ± 1 °F[1]
 • воспламенения 234,15 K (−39 °C) °C
 • самовоспламенения 458,15 K (185 °C) °C
Пределы взрываемости 4-60 %
Критическая точка 192,85
Энтальпия
 • образования -166 кДж/моль
Давление пара 2,7650; 4,8670; 10,0100[2] атм
Константа диссоциации кислоты pKa{\displaystyle pK_{a}} 13,57 (25 °C)
Растворимость
 • в воде С водой, этанолом смешивается во всех соотношениях.
Показатель преломления 1,3316
Дипольный момент 2,750 ± 0,006 Д
Рег. номер CAS 75-07-0
PubChem 177
Рег. номер EINECS 200-836-8
SMILES
InChI
RTECS AB1925000
ChEBI 15343
Номер ООН 1089
ChemSpider 172
Предельная концентрация 5 мг/м3
ЛД50 1232 мг/кг (мыши, внутрижелудочно),
900 мг/кг (мыши, перорально),
661 мг/кг (крысы, перорально)
Токсичность токсичен, вызывает привыкание, ирритант, канцероген
Пиктограммы ECB
NFPA 704
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Ацетальдеги́д (у́ксусный альдегид, этана́ль, метилформальдегид) — органическое соединение класса альдегидов с химической формулой CH3-CHO, является альдегидом этанола и уксусной кислоты. Это один из наиболее важных альдегидов, широко встречающийся в природе и производится в больших количествах индустриально. Ацетальдегид встречается в кофе, в спелых фруктах, хлебе, и синтезируется растениями как результат их метаболизма. Также производится окислением этанола.

Вещество представляет собой бесцветную ядовитую жидкость, при стандартных условиях, бесцветный газ с резким запахом, похожим на запах прелых яблок, хорошо растворяется в воде, спирте, эфире. Из-за очень низкой температуры кипения (20,2 °C) хранят и перевозят ацетальдегид в виде тримера — паральдегида, из которого он может быть получен нагреванием с минеральными кислотами (обычно серной).

В 2003 глобальное производство было около миллиона тонн в год.

Основной способ получения — окисление этилена (процесс Вакера):

2Ch3=Ch3+O2→2Ch4CHO{\displaystyle {\mathsf {2CH_{2}{\text{=}}CH_{2}+O_{2}\rightarrow 2CH_{3}CHO}}}

В качестве окислителя в процессе Вакера используется хлорид палладия, регенерирующийся окислением хлоридом меди в присутствии кислорода воздуха:

Ch3=Ch3+PdCl2+h3O→Ch4CHO+Pd+2HCl{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+PdCl_{2}+H_{2}O\rightarrow CH_{3}CHO+Pd+2HCl}}}
Pd+2CuCl2→PdCl2+2CuCl{\displaystyle {\mathsf {Pd+2CuCl_{2}\rightarrow PdCl_{2}+2CuCl}}}
4CuCl+4HCl+O2→4CuCl2+2h3O{\displaystyle {\mathsf {4CuCl+4HCl+O_{2}\rightarrow 4CuCl_{2}+2H_{2}O}}}

Также получают уксусный альдегид гидратацией ацетилена в присутствии солей ртути (реакция Кучерова), с образованием енола, который изомеризуется в альдегид:

C2h3+h3O→Hg2+,H+Ch4CHO{\displaystyle {\mathsf {C_{2}H_{2}+H_{2}O{\xrightarrow[{}]{Hg^{2+},H^{+}}}CH_{3}CHO}}}

Другой метод доминировал до открытия процесса Вакера. Он состоял в окислении или дегидрировании этилового спирта, на медном или серебряном катализаторе.

C2H5OH→Ag,oCCh4CHO+h3{\displaystyle {\mathsf {C_{2}H_{5}OH{\xrightarrow[{}]{Ag,^{o}C}}CH_{3}CHO+H_{2}}}}
2C2H5OH+O2→Ag,oC2Ch4CHO+2h3O{\displaystyle {\mathsf {2C_{2}H_{5}OH+O_{2}{\xrightarrow[{}]{Ag,^{o}C}}2CH_{3}CHO+2H_{2}O}}}

По своим химическим свойствам уксусный альдегид является типичным алифатическим альдегидом, и для него характерны реакции этого класса соединений. Его реакционная способность определяется двумя факторами: активностью карбонила альдегидной группы и подвижностью атомов водорода метильной группы, вследствие индуктивного эффекта карбонила.

Подобно другим карбонильным соединениям с атомами водорода у α-углеродного атома, ацетальдегид таутомеризируется, образуя енол — виниловый спирт, равновесие почти полностью смещено в сторону альдегидной формы (константа равновесия — только 6⋅10−5 при комнатной температуре[3]):

Реакция конденсации[править | править код]

Из-за небольших размеров молекулы и доступности в виде безводного мономера (в отличие от формальдегида) ацетальдегид является широко распространённым электрофильным агентом в органическом синтезе[4]. Что касается реакций конденсации, альдегид прохирален. Он используется, в основном, как источник синтона «CH3C+H(OH)» в альдольной и соответствующих реакциях конденсации. Реактив Гриньяра и литий-органические соединения реагируют с MeCHO, образуя производные гидроксиэтила. В одной из реакций конденсации, три эквивалента формальдегида присоединяются, а один восстанавливает образующийся альдегид, образуя из MeCHO пентаэритрит (C(CH2OH)4.)

В реакции Штрекера[5] ацетальдегид конденсируется с цианидом и аммиаком, образуя после гидролиза аминокислоту — аланин[6]. Ацетальдегид способен конденсироваться с аминами образуя имины, так как конденсация циклогексиламина даёт N-этилиден циклогексиламин. Эти имины могут быть использованы для прямой последующей реакции, таких, как альдольная конденсация[7].

Ацетальдегид также — важный строительный блок для синтезов гетероциклических соединений. Выдающийся пример — конверсия под действием аммиака до 5-этил-2-метилпиридина («альдегид-коллидин»)[8]

Реакция альдольной конденсации обусловлена подвижностью водорода в альфа-положении в радикале и осуществляется в присутствии разбавленных щелочей. Её можно рассматривать как реакцию нуклеофильного присоединения одной молекулы альдегида к другой:

Ch4-CHO+Ch4-CHO→Ch4-CH(OH)-Ch3-CHO{\displaystyle {\mathsf {CH_{3}{\text{-}}CHO+CH_{3}{\text{-}}CHO\rightarrow CH_{3}{\text{-}}CH(OH){\text{-}}CH_{2}{\text{-}}CHO}}}

Производные ацеталя[править | править код]

Три молекулы ацетальдегида конденсируются, образуя «паральдегид» — циклический тример, содержащий одиночные С-О связи. Конденсация четырёх молекул даёт циклическое соединение, называемое метальдегид.

Ацетальдегид образует стабильные ацетали при реакции с этанолом в условиях дегидратации. Продукт CH3CH(OCH2CH3)2 называется «ацеталь»[9], хотя термин используется для описания более широкой группы соединений с общей формулой RCH(OR')2.

Применяют уксусный альдегид для получения уксусной кислоты, бутадиена, некоторых органических веществ, альдегидных полимеров.

Традиционно ацетальдегид, в основном, использовался в качестве прекурсора к уксусной кислоте. Такое применение было отвергнуто ввиду того, что уксусная кислота более эффективно производится из метанола с помощью процессов Монсанто[10] и Катива[11]. В терминах реакции конденсации, ацетальдегид — важный прекурсор к пиридиновым производным, пентаэритролу и кротональдегиду. Мочевина и ацетальдегид конденсируются, образуя смолы. Уксусный ангидрид реагирует с ацетальдегидом, давая этилидендиацетат, из которого получают винилацетат — мономер поливинилацетата.

В печени имеется фермент алкогольдегидрогеназа, который окисляет этанол в ацетальдегид, который затем окисляется в безопасную уксусную кислоту посредством ацетальдегиддегидрогеназы. Эти две реакции окисления связаны с восстановлением NAD+ в NADH[12]. В мозгу алкогольдегидрогеназа не играет особой роли в окислении этанола в ацетальдегид, это делает энзим каталаза. Конечные шаги алкогольной ферментации в бактериях, растениях и дрожжах включают конверсию пирувата в ацетальдегид под действием пируват декарбоксилазы, после чего — конверсию ацетальдегида в этанол. Последняя реакция снова катализируется алкогольдегидрогеназой, но уже в обратном направлении.

Табачная зависимость[править | править код]

Ацетальдегид — значительная часть дыма табака. Была продемонстрирована синергическая связь с никотином, увеличивающая появление зависимости, особенно у молодёжи.[13][14]

Болезнь Альцгеймера[править | править код]

Люди, у которых отсутствует генетический фактор конверсии ацетальдегида в уксусную кислоту, могут иметь большой риск предрасположенности к болезни Альцгеймера. «Эти результаты указывают, что отсутствие ALDh3 — это фактор риска для поздно возникающей болезни Альцгеймера.»[15]

Проблема алкоголя[править | править код]

Ацетальдегид, полученный из поглощённого этанола, связывает ферменты, образуя аддукты, связанные с заболеваниями органов.[16] Лекарство дисульфирам (Antabuse) предотвращает окисление ацетальдегида до уксусной кислоты. Это даёт неприятные ощущения при принятии алкоголя. Antabuse используется в случае, когда алкоголик сам хочет излечиться.

Канцероген[править | править код]

Ацетальдегид является канцерогеном первой группы.[17][18] «Существует достаточно доказательств канцерогенности ацетальдегида (основного метаболита этанола) в экспериментах на животных», кроме того, ацетальдегид повреждает ДНК[19] и вызывает несоразмерное с общей массой тела развитие мускулов, связанное с нарушением белкового равновесия организма.[20] В результате исследования 818 алкоголиков ученые пришли к выводу, что у тех пациентов, которые подвергались действию ацетальдегида в большей степени, присутствует дефект в гене фермента алкогольдегидрогеназы. Поэтому такие пациенты подвержены большему риску развития рака верхней части ЖКТ и печени.[21]

Безопасность[править | править код]

Ацетальдегид[22] токсичен при действии на кожу, ирритант, канцероген. Однако токсичность ацетальдегида ниже, чем у формальдегида, так как ацетальдегид в организме быстро окисляется до безвредной уксусной кислоты. Он также является загрязнителем воздуха при горении, курении, в автомобильных выхлопах. Кроме того, этаналь образуется при термической обработке полимеров и пластиков.[23]

При длительном контакте с воздухом могут образоваться перекиси, и произойти взрыв, который может разрушить ёмкость[24]

Санитарно-гигиенические рекомендации[24][править | править код]
  • Кожа: Использование адекватной защитной одежды для предотвращения контакта с кожей.
  • Глаза: Использование адекватных средств индивидуальной защиты (СИЗ) глаз
  • Переодевание: При намокании (из-за пожароопасности)
  • Рекомендации: Установить фонтанчики для промывки глаз, оборудовать места для быстрого переодевания


По данным[25] ПДК ацетальдегида 5 мг/м3. В то же время, по данным[26] порог восприятия запаха этого вещества может достигать, например, 1800 мг/м3.

Врожденная непереносимость алкоголя[править | править код]

Одним из механизмов врожденной непереносимости алкоголя является накопление ацетальдегида.

  1. 1 2 http://www.cdc.gov/niosh/npg/npgd0001.html
  2. ↑ Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
  3. ↑ March, J. «Organic Chemistry: Reactions, Mechanisms, and Structures» J. Wiley, New York: 1992. ISBN 0-471-58148-8.
  4. ↑ Sowin, T. J.; Melcher, L. M. «Acetaldehyde» in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi:10.1002/047084289
  5. ↑ en:Strecker amino acid synthesis
  6. ↑ Kendall, E. C. McKenzie, B. F. (1941), «dl-Alanine», Org. Synth.; Coll. Vol. 1: 21
  7. ↑ Wittig, G.; Hesse, A. (1988), «Directed Aldol Condensations: β-Phenylcinnamaldehyde», Org. Synth.; Coll. Vol. 6: 901
  8. ↑ Frank, R. L.; Pilgrim, F. J.; Riener, E. F. (1963), «5-Ethyl-2-Methylpyridine», Org. Synth.; Coll. Vol. 4: 451
  9. ↑ Adkins, H.; Nissen, B. H. (1941), «Acetal», Org. Synth.; Coll. Vol. 1: 1
  10. ↑ en:Monsanto process
  11. ↑ en:Cativa process
  12. ↑ NAD+ to NADH Hipolito, L.; Sanchez, M. J.; Polache, A.; Granero, L. Brain metabolism of ethanol and alcoholism: An update. Curr. Drug Metab. 2007, 8, 716—727
  13. ↑ Study Points to Acetaldehyde-Nicotine Combination in Adolescent Addiction (неопр.) (недоступная ссылка). Дата обращения 10 апреля 2010. Архивировано 25 августа 2009 года.
  14. ↑ Nicotine’s addictive hold increases when combined with other tobacco smoke chemicals, UCI study finds Архивировано 9 февраля 2011 года.
  15. ↑ «Mitochondrial ALDh3 Deficiency as an Oxidative Stress». Annals of the New York Academy of Sciences 1011: 36-44. April 2004. doi:10.1196/annals.1293.004. PMID 15126281. Retrieved 2009-08-13.
  16. ↑ Nakamura, K.; Iwahashi, K.; Furukawa, A.; Ameno, K.; Kinoshita, H.; Ijiri, I.; Sekine, Y.; Suzuki, K.; Iwata, Y.; Minabe, Y.; Mori, N. Acetaldehyde adducts in the brain of alcoholics. Arch. Toxicol. 2003, 77, 591.
  17. ↑ IARC: IARC STRENGTHENS ITS FINDINGS ON SEVERAL CARCINOGENIC PERSONAL HABITS AND HOUSEHOLD EXPOSURES (неопр.) (Press release). International Agency for Research on Cancer (IARC). — «November 2, 2009 ‐‐ IARC has updated the cancer assessments of several personal habits and household exposures that cause cancer, including tobacco, areca nut, alcohol, and household coal smoke. The update was conducted with the advice of 30 scientists from 10 countries who met at IARC in October 2009. [...] The Working Group concluded that acetaldehyde associated with alcohol consumption is carcinogenic to humans (Group 1) and confirmed the classification in Group 1 of alcohol consumption and of ethanol in alcoholic beverages.». Дата обращения 1 августа 2014.
  18. ↑ Chemical Summary For Acetaldehyde, US Environmental Protection Agency
  19. ↑ DNA and chromosome damage induced by acetaldehyde in human lymphocytes in vitro
  20. ↑ ^ Nicholas S. Aberle, II, Larry Burd, Bonnie H. Zhao and Jun Ren (2004). «Acetaldehyde-induced cardiac contractile dysfunction may be alleviated by vitamin В1 but not by vitamins B6 or B12». Alcohol & Alcoholism 39 (5): 450—454. doi:10.1093/alcalc/agh085.
  21. ↑ Nils Homann, Felix Stickel, Inke R. König, Arne Jacobs, Klaus Junghanns, Monika Benesova, Detlef Schuppan, Susanne Himsel, Ina Zuber-Jerger, Claus Hellerbrand, Dieter Ludwig, Wolfgang H. Caselmann, Helmut K. Seitz Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers International Journal of Cancer Volume 118, Issue 8, Pages 1998—2002
  22. Климов А.Н., Иоффе Д.В., Будковская Н.Г. Уксусный алдегид // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1985. — Т. 26. Углекислые воды - Хлор. — 560 с. — 150 000 экз.
  23. ↑ Smoking. (2006). Encyclopædia Britannica. Accessed 27 Oct 2006.
  24. 1 2 NIOSH Pocket guide to chemical hazards / Michael E. Barsan (technical Editor). — NIOSH. — Cincinnati, Ohio, 2007. — С. 2. — 454 с. — (DHHS (NIOSH) Publication No. 2005-149).
  25. (Роспотребнадзор). № 206. Ацетальдегид // ГН 2.2.5.3532-18 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» (рус.) / утверждены А.Ю. Поповой. — Москва, 2018. — С. 18. — 170 с. — (Санитарные правила).
  26. Pliska V. and G. Janicek. Die Veranderungen der Wahrnehmungsschwellen - Konzentration der Riechstoffe in Einiger Homologischen Serien (нем.) // Heymans Institute of Pharmacology Archives internationales de pharmacodynamie et de thérapie. — Gent (Belgium), 1960. — Vol. 156. — S. 211-216. — ISSN 0003-9780.

§ 7. ФОРМАЛЬДЕГИД. Токсикологическая химия. В.Ф. Крамаренко

Формальдегид (альдегид муравьиной кислоты)—газ, хорошо растворимый в воде, обладающий острым специфическим запахом. Водный раствор, содержащий 36,5—37,5 % формальдегида, называется формалином. Формальдегид образуется при неполном сгорании метана, при окислении метилового спирта и т. д. Газообразный формальдегид при комнатной температуре легко полимеризуется с образованием параформальдегида. Известно несколько продуктов полимеризации газообразного формальдегида. Один из полимеров формальдегида называется триоксиметилен (СН 2 О) 3. Он имеет температуру плавления 63—64°С. В водных растворах также образуется параформальдегид, относящийся к полиоксиметиленам, которые являются продуктами полимеризации значительно большего числа молекул формальдегида. ПараформаЛьдегид при нагревании, особенно в присутствии кислот, частично деполимеризуется с образованием газообразного формальдегида.

Формальдегид изолируют из биологического материала путем перегонки с водяным паром. Однако этим методом перегоняется только незначительная часть формальдегида. Считают, что формальдегид в водных растворах находится в виде гидрата (метиленгликоля), который трудно отгоняется с водяным паром:

НСНО + НОН ---> СН 2 (ОН) 2.

Применение. Действие на организм. Формальдегид широко используется в промышленности для получения пластических масс и фенолоформальдегидных смол, дубления кож, консервирования анатомических препаратов, получения гексаметилентетрамина, синтетического каучука, протравливания зерна, обработки помещений, тары с целью дезинфекции.

Формальдегид проявляет дубящее, антисептическое и дезодорирующее действие., При вдыхании небольших количеств формальдегида он раздражает верхние дыхательные пути. При вдыхании больших концентраций формальдегида может наступить внезапная смерть в результате отека и спазма голосовой щели. При попадании формальдегида в организм через рот могут наступить некротические поражения слизистой оболочки рта, пищевого канала, появляется слюнотечение, тошнота, рвота, понос. Формальдегид угнетает центральную нервную систему, в результате этого может произойти потеря сознания, появляются судороги. Под влиянием формальдегида развиваются дегенеративные поражения печени, почек, сердца и головного мозга. Формальдегид оказывает влияние на некоторые ферменты. 60—90 мл формалина являются смертельной дозой.

Метаболизм. Метаболитами формальдегида являются метиловый спирт и муравьиная кислота, которые, в свою очередь, подвергаются дальнейшему метаболизму.

Обнаружение формальдегида

В химико-токсикологическом анализе для обнаружения формальдегида Η—СНО применяют реакции с хромотроповой кислотой, фуксинсернистой кислотой, с раствором кодеина в серной кислоте, с резорцином и др.

Реакция с хромотроповой кислотой. Хромотроповая кислота (1,8-диоксинафталин-3,6-дисульфокислота) с формальдегидом в присутствии серной кислоты дает фиолетовую окраску. При взаимодействии формальдегида с хромотроповой кислотой концентрированная серная кислота одновременно является водо-

отнимающим средством и окислителем. Вначале серная кислота вызывает конденсацию формальдегида с хромотроповой кислотой, а затем окисляет образовавшийся продукт конденсации:

Для успешного протекания указанной выше реакции требуется серная кислота, концентрация которой должна быть не ниже 72 %.

Выполнение реакции. В пробирку вносят 3—5 капель исследуемого раствора или дистиллята, 4 мл 12 н. раствора серной кислоты и несколько кристалликов хромотроповой кислоты, а затем пробирку нагревают в течение 10 мин на водяной бане до 60 °С. При наличии формальдегида в пробе появляется фиолетовая окраска.

Второй вариант реакции. В пробирку вносят 1 мл исследуемого раствора, 0,2 мл 1 %-го раствора хромотроповой кислоты в концентрированной серной кислоте, а затем прибавляют 5 мл концентрированной серной кислоты и взбалтывают. Появление фиолетовой или красно-фиолетовой окраски указывает на наличие формальдегида в исследуемом растворе.

Предел обнаружения: 1 мкг формальдегида в пробе.

Не дают этой реакции альдегиды уксусной, пропионовой и масляной кислот, хлоралгидрат и др. Эту реакцию дают вещества, которые при гидролизе, дегидратации или окислении образуют формальдегид.

Реакция с фуксинсернистой кислотой. Фуксинсернистая кислота (реактив Шиффа) с формальдегидом дает синюю или сине-фиолетовую окраску.

Для приготовления фуксинсернистой кислоты берут раствор парафуксина (I), имеющий красную окраску, прибавляют водный раствор оксида серы (IV) или пропускают газообразный SO 2. При этом образуется фуксинсернистая кислота (II), не имеющая окраски. Эта кислота с альдегидами образует хиноидный краситель (III) розового цвета:

Выполнение реакции. В пробирку вносят 1 мл исследуемого раствора и 2—3 капли концентрированной серной кислоты. Содержимое пробирки взбалтывают и охлаждают проточной водой, затем прибавляют 1 мл раствора фуксинсернистой кислоты. Появление сине-фиолетовой или красно-фиолетовой окраски указывает на наличие формальдегида.

Раствор иногда окрашивается не сразу, а через 10—15 мин. Окраска может появляться не только под влиянием формальдегида, но и под влиянием окислителей (хлор, оксиды азота, кислород воздуха и др.). Поэтому появление окраски через 30 мин после прибавления реактивов не должно рассматриваться как положительный результат реакции на формальдегид.

Эта реакция не специфична для обнаружения формальдегида. Ее дают ацетальдегид, нитробензальдегид и др. Не дает указанной окраски хлоралгидрат. В сильно кислой среде (рН = 0,7) с фуксинсернистой кислотой реагирует только формальдегид. При рН >= 2,7 с фуксинсернистой кислотой реагирует ацетальдегид, фурфурол и др.

Приготовление реактива (см. Приложение 1, реактив 56).

Реакция с метиловым фиолетовым. Метиловый фиолетовый, который аналогично фуксину предварительно обесцвечен сульфитом натрия, с формальдегидом дает сине-фиолетовую окраску.

Выполнение реакции. В пробирку вносят 1 мл исследуемого раствора и 0,5 мл 10 %-го раствора серной кислоты, а затем прибавляют такой же объем раствора метилового фиолетового, обесцвеченного сульфитом или гидросульфитом натрия. При наличии формальдегида в пробе появляется сине-фиолетовая окраска. Эта реакция не специфична для обнаружения формальдегида. Ее дают и некоторые другие альдегиды.

Приготовление реактива (см. Приложение 1, реактив 21).

Реакция с кодеином и серной кислотой. При нагревании формальдегида с кодеином в присутствии концентрированной серной кислоты появляется синяя окраска. Эта реакция основана на том, что под влиянием концентрированной серной кислоты от кодеина отщепляется метоксильная группа, в результате чего

образуется морфин, содержащий фенольную группу. При взаимодействии морфина с формальдегидом появляется синяя окраска.

Выполнение реакции. В фарфоровую чашку вносят 1 мл исследуемого раствора и прибавляют 5 мл концентрированной серной кислоты. После охлаждения жидкости прибавляют 0,02— 0,03 г кодеина. При наличии формальдегида сразу или через 5—10 мин появляется сине-фиолетовая или красно-фиолетовая окраска.

Предел обнаружения: 0,02 мкг формальдегида.

Реакция с резорцином. Альдегиды реагируют с резорцином в его таутомерной форме (кетоформе) с образованием окрашенного соединения:

Выполнение реакции. В пробирку вносят 1 мл исследуемого раствора и 1 мл 1 %-го раствора резорцина в 10 %-м растворе гидроксида натрия. Смесь нагревают в течение 3—5 мин на водяной бане. Появление розовой или малиновой окраски указывает на наличие формальдегида. Эту реакцию дают уксусный альдегид, акролеин, фурфурол и др.

Реакция восстановления ионов серебра. Из аммиачного раствора солей серебра формальдегид выделяет металлическое серебро:

Выполнение реакции. В хорошо очищенную от жира пробирку вносят 5 капель 1 %-го раствора нитрата серебра и по каплям прибавляют 10%-й раствор аммиака до растворения образовавшегося осадка гидроксида серебра. К полученному раствору прибавляют 1 мл исследуемого раствора, а затем смесь осторожно нагревают на пламени горелки. При наличии формальдегида происходит реакция образования «серебряного зеркала». Эта реакция успешно протекает при рН = 8...9. Нагревание пробирки должно быть умеренным. При высокой температуре «серебряное зеркало» не образуется, а выпадает бурый осадок серебра.

Кроме формальдегида эту реакцию дают и некоторые другие восстанавливающие вещества.

Реакция с реактивом Фелинга. При нагревании реактива Фелинга с формальдегидом выпадает осадок оксида или гидроксида меди. Оксид меди (I) имеет черную окраску. Окраска гидроксида меди (I) зависит от размера частиц. Очень мелкие частицы имеют голубовато-зеленую окраску, а крупные — красную. Поэтому при взаимодействии реактива Фелинга с восстановителями в большинстве случаев выпадает желтый или красный осадок.

В реактиве Фелинга, который представляет собой смесь сульфата меди, щелочи и сегнетовой соли, медь входит в состав комплексного иона:

Выполнение реакции. 1 мл исследуемого раствора вносят в пробирку, в которую прибавляют 1—2 капли 10 %-го раствора гидроксида натрия до щелочной реакции (по лакмусу), а затем прибавляют 2—3 капли реактива Фелинга. Жидкость интенсивно взбалтывают и нагревают на пламени газовой горелки. Образование желтого или красного осадка указывает на наличие формальдегида в исследуемом растворе.

Эта реакция не специфична. Кроме формальдегида ее дают и другие альдегиды алифатического ряда, восстанавливающие сахара и др.

Приготовление реактива (см. Приложение 1, реактив 42).

Обнаружение формальдегида методом микродиффузии. Для обнаружения формальдегида в тканях, крови и моче используется метод микродиффузии, основанный на реакции с хромотроповой кислотой (см. гл. III, § 3).

СОДЕРЖАНИЕ

ПРЕДЫДУЩАЯ | СЛЕДУЮЩАЯ

Еще по теме:


Смотрите также

От вздутия живота народные средства

От Вздутия Живота Народные Средства

Народные средства от вздутия живота Вздутие живота или метеоризм характеризуется излишним скоплением газов в кишечнике, которое может вызывать болезненные… Подробнее...
Заболевания вызывающие тошноту, диарею и повышенную температуру тела

Температура Понос Тошнота

Заболевания вызывающие тошноту, диарею и повышенную температуру тела Каждый хоть однажды сталкивался с такими неприятными симптомами, как температура, понос,… Подробнее...
Почему у ребенка зеленый понос

Понос Зеленый У Ребенка

Почему у ребенка зеленый понос Появление у ребенка зеленого поноса часто вводит в панику его родителей. Не зная причину появления поноса зеленого цвета, в… Подробнее...
Какие болезни сопровождаются поносом и рвотой

Температура Понос Рвота У Ребенка

Какие болезни сопровождаются поносом и рвотой У маленького ребенка еще только формируется защитная система организма, и… Подробнее...
Лекарство от вздутия живота

Лекарство От Вздутия Живота

Чем снять вздутие живота Вздутие живота, как его называют врачи, метеоризм, — неприятная, а главное, исключительно… Подробнее...
Причины поноса после еды

После Еды Сразу Иду В Туалет По Большому - Понос

Причины поноса после еды Некоторый жалуются, что после еды сразу идут в туалет по-большому из-за поноса. Такая… Подробнее...
Понос после арбуза

Понос После Арбуза

Какие продукты могут вызвать понос Расстройство пищеварения может возникнуть не только как реакция на отравление, но и… Подробнее...
Первая помощь ребенку при рвоте

Рвота У Ребенка Без Температуры И Поноса Что Делать - 3 Года

Первая помощь ребенку при рвоте Дети до 5 лет являются самой восприимчивой к различным вирусам и бактериям группой.… Подробнее...

Информация, размещенная на сайте, не может рассматриваться как рекомендация пациентам по диагностированию и лечению каких-либо заболеваний и не может служить заменой консультации с врачом. Ничто в данной информации не должно быть истолковано как призыв неспециалистам самостоятельно лечить диагностированные заболевания. Данная информация не может быть использована для принятия решения об изменении порядка и режима применения продуктов, рекомендованного врачом.


Copyright medrox.ru © 2015- Карта сайта, XML.