Грамм положительные палочки


Грамположительные бактерии — Википедия

Материал из Википедии — свободной энциклопедии

Грамположительные бактерии сибирской язвы (фиолетовые палочки) в образце цереброспинальной жидкости. Другие клетки — белые кровяные тельца.

Грамположительные бактерии (обозначаются Грам (+)) — бактерии, которые, при промывке, при использовании окраски микроорганизмов по методу Грама, оказываются прочно окрашенными в синий цвет, сохраняют окраску, не обесцвечиваются, в отличие от грамотрицательных бактерий.

Большинство Грам (+) бактерий имеют однослойную клеточную мембрану, без внешней мембраны, присущей грамотрицательным бактериям. Исключением является тип Deinococcus-Thermus.

Большая часть патогенных для человека микроорганизмов относится к грамположительным. Шесть родов грамположительных организмов являются типичными патогенами человека. Два из них, стрептококки и стафилококки, являются кокками (шарообразными бактериями). Остальные — палочковидные и делятся далее по возможности образовывать споры. Неспорообразующие: Corynebacterium и Листерия; спорообразующие: Бациллы и Клостридии. Спорообразующие можно разделить на факультативных анаэробов Бациллы и облигатных анаэробов Клостридий.

В ранних классификациях грамположительные бактерии составляли тип Firmicutes, но сейчас этот термин используется только для одной, хотя и крупнейшей, их группы. Тип Firmicutes включает много известных родов, таких как Bacillus, Listeria, Staphylococcus, Streptococcus, Enterococcus и Clostridium. Сейчас этот тип также включает Mollicutes, бактерии, подобные микоплазмам, которые совсем не имеют бактериальной клеточной стенки и поэтому не окрашиваются по Граму, но имеют общее происхождение с грамположительными формами.

Другая главная группа грамположительных бактерий — тип Actinobacteria, или группа грамположительных бактерий с высоким содержанием G+C (с содержанием гуанозина и цитозина в ДНК), в отличие от Firmicutes, имеющих низкое содержание G+C. Исторически считалось, что если вторая мембрана — приобретённый признак, обе группы могут быть основными на филогенетическом дереве бактерий, иначе они, вероятно, относительно недавняя монофилетическая группа. В некоторый момент их даже рассматривали как возможных предков архей и эукариот, из-за отсутствия второй мембраны и из-за некоторых биохимических признаков, например, присутствия стеролов. С появлением молекулярной филогенетики, основанной на анализе 16S рРНК, грам-положительные бактерии были окончательно разделены на Firmicutes и Actinobacteria.

  1. Более толстый, по сравнению с грамотрицательными бактериями, пептидогликановый слой.
  2. Имеется только одна мембрана, цитоплазматическая.
  3. Основной компонент — многослойный муреин (40—90 %). Дополнительный компонент: белки, липиды, тейхоевые кислоты и тейхуроновые кислоты.
  4. Образуют эндоспоры.

Грамотрицательные бактерии — Википедия

Грамотрица́тельные бакте́рии (обозначаются Грам (-)) — бактерии, которые не окрашиваются кристаллическим фиолетовым при использовании окраски микроорганизмов по методу окрашивания по Граму[1]. В отличие от грамположительных бактерий, которые сохраняют фиолетовую окраску даже после промывания обесцвечивающим растворителем (спирт), грамотрицательные полностью обесцвечиваются. После промывания растворителем при окрашивании по Граму добавляется контрастный краситель (обычно сафранин), который окрашивает все грамотрицательные бактерии в красный или розовый цвет. Это происходит из-за наличия внешней мембраны, препятствующей проникновению красителя внутрь клетки. Сам по себе тест полезен при классификации бактерий и разделении их на две группы относительно строения их клеточной стенки. Из-за своей более мощной и непроницаемой клеточной стенки грамотрицательные бактерии более устойчивы к антителам, чем грамположительные.

Обычно патогенность грамотрицательных бактерий связывают с определёнными компонентами их клеточных стенок, а именно, с липополисахаридным слоем (ЛПС или эндотоксический слой)[1]. В человеческом организме ЛПС вызывает иммунный ответ, который характеризуется синтезом цитокинов и активацией иммунной системы. Обычной реакцией на синтез цитокинов является воспаление, что также может привести к увеличению количества токсичных веществ в организме хозяина.

Строение оболочки клетки грамотрицательных бактерий

Общие признаки, свойственные большинству грамотрицательных бактерий:

  1. Наличие двух мембран, между которыми находится клеточная стенка и периплазматическое пространство.
  2. Более тонкий, по сравнению с грамположительными бактериями, пептидогликановый слой.
  3. Наружная мембрана содержит липополисахариды (состоит из липида А, полисахаридного ядра и антигена О снаружи и из фосфолипидов изнутри).
  4. В наружной мембране присутствуют порины, функционирующие подобно порам для определённых молекул.
  5. S-слой прикреплен к наружной мембране, а не к пептидогликановому слою.
  6. Если есть жгутик, он имеет четыре поддерживающих кольца, а не два.
  7. Отсутствуют тейхоевая и липотейхоевая кислоты.
  8. Обычно не образуют спор (примечательным исключением является Coxiella burnetii, образующая спороподобные структуры).
  9. Липопротеины прикреплены непосредственно к полисахаридной основе.
  10. Большинство содержат липопротеин Брауна, который связывает наружную мембрану и цепочки пептидоглюканов ковалентной связью.

Химический состав и структура клеточных покровов[править | править код]

Далее рассмотрены слои клеточных покровов грамотрицательных прокариотов, начиная с самого внутреннего:

Клеточная стенка[править | править код]

У грамотрицательных эубактерий строение клеточной стенки намного сложнее, чем у грамположительных. В её состав входит гораздо большее число макромолекул разного химического типа. Пептидогликан образует только внутренний слой клеточной стенки, неплотно прилегая к ЦПМ. Для разных видов грамотрицательных эубактерий содержание этого гетерополимера колеблется в широких пределах. У большинства видов он образует одно- или двухслойную структуру, характеризующуюся весьма редкими поперечными связями между гетерополимерными цепями.

Некоторые скользящие бактерии (миксобактерии, флексибактерии) способны в процессе перемещения по твердому субстрату периодически менять форму клеток, например путём изгибания, что говорит об эластичности их клеточной стенки, и в первую очередь её пептидогликанового слоя. Электронно-микроскопическое изучение, однако, обнаружило у них клеточную стенку, типичную для грамотрицательных эубактерий. Наиболее вероятное объяснение гибкости клеточной стенки этих бактерий — чрезвычайно низкая сшитость её пептидогликанового компонента[2].

Периплазматическое пространство[править | править код]

Появление у грамотрицательных эубактерий дополнительной мембраны в составе клеточной стенки фактически привело к созданию обособленной полости (периплазматического пространства), отграниченной от цитоплазмы и внешней среды специфическими мембранами и несущей важную функциональную нагрузку[2].

Периплазматическое пространство, куда погружен пептидогликановый слой, заполнено раствором, в состав которого входят специфические белки, олигосахариды и неорганические молекулы. Периплазматические белки представлены двумя типами: транспортными белками и гидролитическими ферментами.


Было обнаружено также, что многие бактерии способны в больших количествах вырабатывать ферменты (гликозидазы, протеазы, липазы и проч.), гидролизующие все типы полимерных молекул. Последними могут быть как молекулы, синтезируемые самой клеткой, так и чужеродные, попавшие в клетку извне. Отрицательные последствия гидролиза собственных молекул (самопереваривание) очевидны. В то же время прокариоты нуждаются в гидролитических ферментах, так как это расширяет круг используемых ими веществ, включая в него полимеры разного типа. Становится понятна необходимость изолирования этих ферментов от цитоплазматического содержимого. Грамположительные эубактерии выделяют гидролитические ферменты во внешнюю среду, у грамотрицательных они локализованы в периплазматическом пространстве.

Внешняя мембрана[править | править код]

Снаружи от пептидогликана располагается дополнительный слой клеточной стенки — наружная мембрана. Она состоит из фосфолипидов, типичных для элементарных мембран, белков, липопротеина и липополисахарида. Специфическим компонентом наружной мембраны является липополисахарид сложного молекулярного строения, занимающий около 30—40 % её поверхности и локализованный во внешнем слое.

Белки наружной мембраны можно разделить на основные и минорные. Основные белки представлены небольшим числом различных видов, но составляют почти 80 % всех белков наружной мембраны. Одна из функций этих белков — формирование в мембране гидрофильных пор диаметром примерно 1—15 нм и длиной 50—70 нм, наклонённых к поверхности клеточной стенки по углом 30-40°. Через них осуществляется неспецифическая диффузия молекул с массой до 600—900 Да. Это означает, что через такие поры могут проходить сахара, аминокислоты, небольшие олигосахариды и пептиды. Белки, пронизывающие наружную мембрану насквозь и образующие гидрофильные поры, называют поринами. Минорные белки наружной мембраны представлены гораздо бо́льшим числом видов. Их основная функция — транспортная и рецепторная. Примером минорных белков могут служить белки, ответственные за специфический транспорт в клетку железосодержащих соединений.

Разнообразные функции выполняют макромолекулы, локализованные частично или полностью на внешней стороне клеточной стенки, контактирующей с окружающей средой; это специфические рецепторы для фагов и колицинов; антигены; макромолекулы, обеспечивающие межклеточные взаимодействия при конъюгации, а также между патогенными бактериями и тканями высших организмов.

S-слой и осцилиновые фибриллы[править | править код]

S-слой или зубчатый слой — слой из плотноупакованных белков, выстилающих наружную поверхность клетки и обеспечивающих защиту от резких изменений pH или концентраций каких-либо ионов. Поверх этого слоя расположен слой из волоскоподобных фибрилл, находится за пределами наружной мембраны цианобактерий, способных к скольжению. Похожие на волоски, фибриллы верхнего слоя состоят из стержнеподобного гликопротеина, называемого осциллин.

Скольжение происходит посредством секреции слизи через поры на внешнюю сторону клеточных покровов[3]. Слизь проходит вдоль поверхности из осциллиновых фибрилл наружного слоя клетки и по расположенному рядом субстрату, продвигая фибриллы вперёд. Совокупность организованных волоскоподобных фибрилл, таким образом, действует как пассивный винт, в то время как слизь проходит по их поверхности в процессе скольжения[4].

Наряду с анализом формы клетки, окрашивание по Граму является быстрым диагностическим методом, который ранее использовался для группирования видов бактерий в подотделы.

Медицинская иерархия видов

Основываясь на окраске по Граму, ныне ликвидированное царство Monera было разделено на четыре дивизиона: Firmacutes (+), Gracillicutes (-), Mollicutes (0) и Mendocutes (var.)[5]. Но начиная уже с 1987 года монофилия грамотрицательных бактерий была поставлена под сомнение, а позже и полностью опровергнута бимолекулярными исследованиями[6]. Однако некоторые авторы, такие как Т. Кавалир-Смит, всё ещё считают их монофилитической кладой и относят к подцарству Negibacteria[7].

Строение внешней клеточной мембраны и классификация бактерий[править | править код]

Важно указать на то, что хотя бактерии традиционно делятся на две основные группы, грамположительные и грамотрицательные, такая классификация является двусмысленной и условной, поскольку может относиться к трём совершенно разным аспектам (результат окрашивания, организация клеточных покровов, таксономическая группа), которые необязательно совпадают для всех видов бактерий[8][9][10][11]. Реакция на окрашивание грамположительных и грамотрицательных бактерий не является надёжной характеристикой также и потому, что эти два вида бактерий не формирует филогенетически единую группу[8]. Как бы то ни было, хотя окрашивание по Граму и является эмпирическим критерием, в его основе лежат отчётливые различия в ультраструктуре и химическом составе двух главных видов прокариотических клеточных стенок, встречающихся в природе. Оба этих вида клеточных стенок отличаются друг от друга по наличию или отсутствию внешней липидной мембраны, которая является более надёжной и фундаментальной характеристикой бактериальных клеток[8][12]. Все грамположительные бактерии окружены единственным слоем фосфолипидной мембраны и обычно имеют толстый слой (20—80 нм) из пептидогликанов (муреин и проч.), сохраняющий на себе краситель Грама. Ряд других бактерий, окружённых единственной мембраной, но окрашивающихся грамотрицательно из-за отсутствия пептидогликанового слоя (см. микоплазмы) или же своей неспособности удерживать краситель Грама вследствие специфического состава клеточной стенки, также находится в близком родстве с грамположительными бактериями. Для бактериальных клеток, окружённых одной клеточной мембраной, был предложен термин монодермные бактерии или монодермные прокариоты[8][8][12]. В противоположность грамположительным бактериям, все архетипичные грамотрицательные бактерии, помимо цитоплазматической мембраны, окружены ещё и внешней клеточной мембраной и содержат между ними крайне тонкий слой пептидогликанов (2—3 нм). Наличие внутренней и наружной мембран порождает новый клеточный компартмент — периплазматическое пространство. Такие бактерии/прокариоты были обозначены как дидермные бактерии[8][8][12].

Ещё одно важное различие межу монодермными и дидермными прокариотами — консервативный набор делеций в ряде важных белков (см. DnaK, GroEL)[8][9][12][13]. Из двух структурно различных групп прокариотических организмов, монодермные бактерии считаются предковой группой по отношению к дидермным. Основываясь на ряде наблюдений, включая тот факт, что грамположительные бактерии в большинстве своём продуценты антибиотиков, а грамотрицательные бактерии обычно к таковым устойчивы, было высказано предположение, что у наружной клеточной мембраны грамотрицательных бактерий существует защитный механизм против селективного действия антибиотиков[8][9][12][13]. Некоторые бактерии, как например Deinococcus, окрашиваются грамположительно из-за толстого пептидогликанового слоя, но обладают наружной клеточной мембраной и считаются промежуточным звеном между монодермами (грамположительные) и дидермами (грамотрицательные)[8][13]. Дидермные бактерии в свою очередь могут быть подразделены на простых дидерм, у которых нет слоя липолисахаридов, архетипичных дидерм, чья наружная клеточная мембрана содержит липолисахариды, и собственно дидерм, наружная мембрана которых состоит из миколовой кислоты[10][11][13][14].

Вдобавок многие бактериальные таксоны (см. Negativicutes, Fusobacteria, Synergistetes и Elusimicrobia), которые являются частью типа Firmicutes или его близкородственной ветвью, также обладают дидермной структурой клетки[11][13][14]. Однако консервативная делеция (CSI) в белке HSP60 (GroEL) служит отличительным знаком всех традиционных типов грамотрицательных бактерий (то есть Proteobacteria, Aquificae, Chlamydiae, Bacteroidetes, Chlorobi, Cyanobacteria, Fibrobacteres, Verrucomicrobia, Planctomycetes, Spirochetes, Acidobacteria и т. д.) от атипичных дидерм и других типов монодермных бактерий (таких как Actinobacteria, Firmicutes, Thermotogae, Chloroflexi и т. д.)[13]. Наличие CSI во всех секвенированых видах из обычных ЛПС-содержащих типов грамотрицательных бактерий доказывает, что этот тип бактерий формирует монофилитическую кладу, и говорит в пользу того, что в этой группе ни у одного вида не происходила потеря внешней мембраны. Эти данные говорят против гипотезы о происхождении монодермных прокариот от дидермных путём потери внешней мембраны[13].

Примеры видов[править | править код]

Протеобактерии — большая группа грамотрицательных бактерий, включающая Escherichia coli (E. coli), Salmonella, Shigella и прочих Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Stenotrophomonas, Bdellovibrio, уксуснокислых бактерий, Legionella и множество других. Другие примечательные группы грамотрицательных бактерий включают в себя цианобактерий, спирохет, зелёных серо- и не-серобактерий.

Связанные с медициной грамотрицательные кокки включают в себя три организма, вызывающих заболевания, передающиеся половым путём (Neisseria gonorrhoeae), менингит (Neisseria meningitidis) и респираторные симптомы (Moraxella catarrhalis).

Среди бацилл есть большое количество важных для медицины видов. Некоторые из них в первую очередь вызывают болезни органов дыхания, как например (Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa), выделения (Escherichia coli , Proteus mirabilis, Enterobacter cloacae, Serratia marcescens) и пищеварения (Helicobacter pylori, Salmonella enteritidis, Salmonella typhi).

Ряд грамотрицательных бактерий связан с внутрибольничными инфекциями. В их числе Acinetobacter baumannii, вызывающий бактериемии, вторичный менингит и вентиляторную пневмонию у больных в отделениях реанимации.

Одна из нескольких уникальных характеристик грамотрицательных бактерий — это структура внешней клеточной мембраны. Внешний лист мембраны включает в себя комплекс липополисахаридов, липидные части которых выполняют роль эндотоксинов. Если эндотоксины попадают в транспортную систему, происходит интоксикация, с последующим увеличением температуры, повышением частоты дыхания и понижением кровяного давления. Всё это может привести к токсическому шоку и последующему летальному исходу.

Эта внешняя мембрана защищает бактерию от некоторых антибиотиков, красителей и детергентов, которые в норме повреждают внутреннюю мембрану или клеточную стенку. Такая защита делает бактерию устойчивой к лизоциму и пенициллину. Однако были разработаны альтернативные методы лечения, такие как лизоцим с ЭДТА и антибиотик ампициллин, способные справиться с защитной внешней мембраной некоторых патогенных грамотрицательных организмов. Для этой же цели могут быть использованы и другие лекарства, наиболее эффективные из которых хлорамфеникол, стрептомицин и налидиксовая кислота.

  1. 1 2 3 ''Salton M. R. J., Kim K. S.. Structure. in: Baron's Medical Microbiology (Baron S. et al., eds.). — 4th. — Univ of Texas Medical Branch, 1996. — ISBN 0-9631172-1-1.
  2. 1 2 Гусев М. В., Минеева Л. А. Микробиология: Учебник. — 2003. − 464 с.
  3. ↑ (Hoiczyk и Baumeister, 1998; Hoiczyk, 2000)
  4. Lee R. E. Phycology. — 4th Ed. — Colorado State University, USA.
  5. Gibbons, N. E.; Murray, R. G. E. Proposals Concerning the Higher Taxa of Bacteria (англ.) // International Journal of Systematic Bacteriology (англ.)русск. : journal. — 1978. — Vol. 28, no. 1. — P. 1—6. — doi:10.1099/00207713-28-1-1.
  6. Woese C. R. Bacterial evolution. (англ.) // Microbiological reviews. — 1987. — Vol. 51, no. 2. — P. 221—271. — PMID 2439888. [исправить]
  7. Cavalier-Smith T. Rooting the tree of life by transition analyses (англ.) // Biol. Direct (англ.)русск. : journal. — 2006. — Vol. 1. — P. 19. — doi:10.1186/1745-6150-1-19. — PMID 16834776.
  8. 1 2 3 4 5 6 7 8 9 10 Gupta R. S. (1998) Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria and eukaryotes. Microbiol. Mol. Biol. Rev. 62: 1435—1491.
  9. 1 2 3 Gupta R. S. (2000) The natural evolutionary relationships among prokaryotes. Crit. Rev. Microbiol. 26: 111—131.
  10. 1 2 Desvaux Mickaël, Hébraud Michel, Talon Régine, Henderson Ian R. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue // Trends in Microbiology. — 2009. — Апрель (т. 17, № 4). — С. 139—145. — ISSN 0966-842X. — doi:10.1016/j.tim.2009.01.004. [исправить]
  11. 1 2 3 Sutcliffe Iain C. A phylum level perspective on bacterial cell envelope architecture // Trends in Microbiology. — 2010. — Октябрь (т. 18, № 10). — С. 464—470. — ISSN 0966-842X. — doi:10.1016/j.tim.2010.06.005. [исправить]
  12. 1 2 3 4 5 Gupta R. S. (1998). What are archaebacteria: life’s third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Molecular Microbiology. 29(3):695-707.
  13. 1 2 3 4 5 6 7 Gupta R. S. (2011). Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek. 100:171—182.
  14. 1 2 Marchandin H., Teyssier C., Campos J., Jean-Pierre H., Roger F., Gay B., Carlier J. P., Jumas-Bilak E. Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. (англ.) // International journal of systematic and evolutionary microbiology. — 2010. — Vol. 60, no. Pt 6. — P. 1271—1279. — doi:10.1099/ijs.0.013102-0. — PMID 19667386. [исправить]

Грамположительные и грамотрицательные бактерии. Грамположительные бактерии: строение :: SYL.ru

В большом мире, перефразируя классиков, делаются серьезные дела: запускаются космические корабли, покоряются земные полюса, изобретаются лекарства от неизлечимых болезней. В то же время в микромире тоже кипят нешуточные страсти: вирусы и бактерии пытаются выжить в условиях жестких реалий и тотальной медицинской охоты.

Бактерии: кто они?

Микроорганизмы широко распространены как в окружающем мире, так и внутри человеческого тела.

Некоторые из них используются в медицине, фармакологии, пищевой промышленности. Сравнительно небольшую их часть принято делить на группы: патогенные и условно-патогенные. Первый тип вызывает инфекционные недуги, а второй представляет собой человеческую микрофлору. Причем условные патогены могут вызывать воспалительные процессы при условии ослабления иммунитета. Кроме прочего, они отличаются размерами и строением оболочки. Грамположительные бактерии, клеточная стенка которых довольно крупная, и грамотрицательные микроорганизмы, с тонким защитным слоем, имеют существенные отличия.

Отличия по Граму

Впервые термин "грамположительные и грамотрицательные бактерии" в науку ввел датский ученый Грам.

Использовав при окрашивании микроорганизмов специальный краситель генцианвиолет, бактериолог заметил, что одна группа бактерий поддается окраске, в отличие от второй. Позже ученый выяснил, что причиной этому стала клеточная стенка. Таким образом, окрашиваемые субстанции получили название грамположительные бактерии, а те, которые на краситель не реагировали – грамотрицательные.

Грамположительный мир

Эти микроорганизмы окрашиваются способом Грама в фиолетовый цвет. Смысл процедуры состоит в том, что толщина защитного слоя бактериальной клетки довольно высока, за счет чего краситель удерживается. Грамположительные бактерии представлены стафилококками, стрептококками. Кроме того, грамположительные бактерии – возбудители таких опасных недугов, как газовая гангрена, столбнячная инфекция, сибирская язва. От грамотрицательных бактерий они отличаются по строению и толщине клеточной стенки. Именно она определяет внешний вид микроорганизмов: спиралевидный холерный вибрион, шаровидная кокковая форма. Бактериальная клетка отличается от клеток млекопитающих наличием жесткого защитного каркаса, состоящего из плотного биополимерного слоя, и химическим составом. Этим обусловлена реакция бактерий на действие антибиотиков.

Грамположительные бактерии имеют толстый ригидный слой (клеточную стенку). Защитная оболочка состоит из полипептидов и полисахаридов. До 70% стенки составляет муреиновый мешок. В его состав входят: лизин, ацетилглюкозаминин, ацетилмурамовая кислота, диаминопимелиновая и тейхоевые кислоты.

Основные виды грамположительных бактерий

Большинство опасных для человека микроорганизмов – грамположительные бактерии. Они вызывают такие заболевания, как ботулизм или столбняк, эти болезни плохо поддаются лечению. Кроме того, микоплазму, которую не относят к этому типу, также произвели на свет грамположительные бактерии.

Виды грампозитивных микроорганизмов:

  • кокки: клетки, соединенные между собой с помощью целлюлозы; в основном это анаэробные молочнокислые стрептококки;
  • палочки: спорообразующие представлены анаэробными клостридиями; не способные образовывать споры – молочнокислые лактобациллы;
  • коринеморфы: отличаются склонностью к изменению формы – это стрептомицетовые и пропионовокислые бактерии.

Подобные микроорганизмы вызывают массу недугов. Стафилококки провоцируют грибковые инфекции. Особенно опасен золотистый стафилококк.

Стрептококковые микроорганизмы вызывают фарингиты, рожу, реже пневмонию, сепсис.

Энтерококки часто поражают мочевыводящие пути, сердечную мышцу и провоцируют нагноения в ранах.

Заражение пневмококком зачастую проходит в сопровождении острых симптомов. Синуситы, отиты, внезапные генерализированные пневмонии – вот список заболеваний, вызванных этим возбудителем.

Что касается палочек, то самая известная из них – дифтерийная палочка, выделяющая смертельно опасные токсины и относящаяся к коринебактериям. Помимо нее, палочками вызываются сибирская язва и ботулизм.

Газовую гангрену вызывают бактерии под названием клостридии. Заболевание столбняком также обязано своим существованием этому виду бактерий. Причем столбнячные споры очень живучи: выдерживают длительное кипячение и замачивание в дезинфицирующих растворах.

Грамотрицательные микроорганизмы

В отличие от грампозитивных собратьев, они не окрашиваются в характерный цвет.

Напомним, что грамположительные бактерии, строение которых отличается более плотной клеточной оболочкой, не теряют фиолетовый цвет даже во время промывания. Тогда как грамотрицательные прокариоты поддаются полному обесцвечиванию. Но при этом контрастный сафранин окрашивает эти бактерии в розовато-красные цвета. Несмотря на более тонкую стенку, которая прочнее, нежели у иного вида бактерий, грамотрицательные микроорганизмы сложнее поддаются действию антител.

Заболевания, вызываемые грамотрицательными бактериями

Грамположительные и грамотрицательные бактерии отличаются реакцией на антибиотики. Более устойчивой к ним является вторая группа микроорганизмов.

Многие виды представляют собой объект пристального внимания медицины. Это бактерии, вызывающие венерические болезни: гонорею, сифилис, хламидийные инфекции. Грамотрицательные патогены, провоцирующие респираторные заболевания - моракселла катаралис, проблемы с дыханием - легионелла, клебсиелла. Также эти устойчивые бактерии вызывают менингит, нарушения пищеварения или язвенную болезнь желудка (сальмонелла, хеликобактер пилори, эшерихия коли). По форме бактерии довольно разнообразны: спириллы, палочки, спирохеты, вибрионы, трубчатые чехлы.

Знания о микроорганизмах – на пользу медицине

Информация о возбудителях различных болезней, как грамположительных, так и грамотрицательных, значительно упростила лечение многих недугов. Понимание того факта, что мембрана грамотрицательных бактерий прочнее остальных, позволила ученым выяснить их важное свойство: устойчивость ко многим видам антибиотиков. Кроме прочего, знания о мутациях и приспосабливании микроорганизмов к лекарственным препаратам также улучшили качество лечения бактериальных инфекций. Немаловажным аспектом является информация о том, что прежде всего влияют на организм токсины, выделяемые грамположительными и грамотрицательными видами бактерий.

Но наука не стоит на месте, и уже разработаны медикаменты, которые способны справиться с мембранной защитой грамотрицательных микроорганизмов. При этом имеет значение состояние макроорганизма в целом: его иммунный ответ и объемы воспалительных процессов.

Помимо заболеваний, бактерии приносят пользу: с их помощью можно готовить полезные кисломолочные продукты, очищать сточные воды, использовать в животноводстве.

Мазок на флору, что это такое и как его расшифровать?

Анализ мазка на флору является одним из методов обследования женщин, который применяется в гинекологии. Для исследования мазок берется со слизистой оболочки влагалища, мочеиспускательного канала или шейки матки, что позволяет выявить наличие в нем патогенной флоры, атипичных клеток, а также произвести оценку гормонального фона женщины.

Содержание:


Показанием к сдаче анализа может стать как профилактический осмотр у гинеколога (1 раз в 3 месяца), так и наличие жалоб со стороны женщины. Одними из часто встречающихся жалоб у женщин являются боли внизу живота, выделения, зуд, жжение в области влагалища. Каждая женщина должна знать, что анализ мазка на флору необходимо делать после длительного приема антибиотиков (профилактика кандидоза) и в случае планирования беременности.

Процедура взятия мазка безболезненная и обычно входит в перечень действий врача при посещении его пациенткой, а в случае проведения терапии этот анализ становится необходимым, чтобы убедиться в эффекте лечения.

Как проводится анализ?

Перед тем, как сдавать мазок, за 1-2 дня необходимо соблюдать некоторые условия, которые нужны для большей информативности и достоверности результатов.

К этим условиям относятся:

  • Не вести половую жизнь за 1-2 дня до сдачи анализа.
  • Не использовать крем, свечи, таблетки для влагалища.
  • Не сдавать мазок во время менструации.
  • Не проводить спринцеваний и купаться в ванной.

Кроме того, не рекомендуется мыть половые органы моющими средствами, кроме мыла, в день посещения гинеколога. За несколько часов до взятия мазка не рекомендуется мочиться. Анализ у женщины берется стерильным (одноразовым) шпателем из 3 мест – цервикального канала шейки матки, отверстия мочеиспускательного канала и со слизистой оболочки влагалища.

Мазок на флору: расшифровка

После взятия мазка анализ сдается в лабораторию, после чего врач на приеме должен его расшифровать пациентке. Желательно мазки на флору сдавать в одном и том же медицинском учреждении, так как в разных лабораториях могут отличаться методы окраски и описания мазков.

Нужно знать о том, что желательно проходить обследование у одного и того же врача, особенно если вы получаете курс терапии. Для полноты исследования мазок на флору будет взят до него и после, а также может быть исследован в течение курса лечения. Это делается для контроля за реакцией организма на лечебные меры.

Необходимо помнить о том, что расшифровкой анализа может заниматься только лечащий врач с высшим медицинским образованием. Во избежание недоразумений и ложных выводов не рекомендуется доверять расшифровку анализа другим медицинским работникам.

Что означают эти буквы на бланке анализа?

Для краткости медики сокращают буквы, в которых кроется значения одного из показателей анализа. Чтобы понять, что такое нормальная флора влагалища, для начала необходимо понимать значение букв.

Итак, буквы и их значения выглядят следующим образом:

  • V, C и соответственно U означают места, из которых берется мазок. V-vagina (влагалище), C-cervix (цервикальный канал шейки матки), U-uretra (мочеиспускательный канал). Все обозначения, которые стоят напротив букв, говорят о том, что было обнаружено в этих точках исследования.
  • L – означают «лейкоциты», которые могут встречаться в норме и при патологии, но отличаются количеством.
  • Эп – означает «эпителий», которое в некоторых случаях пишется как «Пл.Эп.» или «плоский эпителий», что более соответствует названию клеток.
  • Gn – означает возбудителя гонореи (гонококк).
  • Trich – означает возбудителя трихомониаза (трихомонада).

Кроме этого, в мазке может быть слизь, наличие которой говорит о норме РН влагалища, а также палочки Додерлейна (лактобациллы), которые составляют в норме 95% всей микрофлоры влагалища.

В некоторых лабораториях количество той или иной флоры отмечают знаком «+», который рассчитывается по 4 категориям – «+» — незначительное количество, и до «++++», которое характеризует обильным количеством. Если какой-то флоры в мазке нет, то в лаборатории отмечают это как «abs», что в переводе с латинского (сокращенно) означает отсутствие этого вида флоры.

Что такое палочки Додерлейна?

При рождении РН девочки является нейтральным, а влагалище – стерильным. Постепенно во влагалище начинают проникать различные условно-патогенные микроорганизмы, но благодаря нейтральной РН-среде они не развиваются. Палочки Додерлейна появляются у девочек в период становления гормонального фона (12-14 лет), когда в организме начинает преобладать выработка эстрогенов.

Палочки питаются гликогеном, которые вырабатывают эпителиальные клетки, и защищают влагалище от вредоносных и чужеродных бактерий. Продуктом распада гликогена является молочная кислота, которая создает кислую среду во влагалище, способную нейтрализовать всю патогенную флору.

Сниженное количество палочек Додерлейна говорит о нарушении баланса микрофлоры и сдвиге РН во влагалище в щелочную сторону, которое характерно для женщин, живущих активной половой жизнью. На баланс микрофлоры активно влияют как патогенные микробы, так и условно-патогенные, которые в норме могут встречаться во влагалище.

Что такое кокковая флора?

Кокки, которые также могут встречаться при описании мазка, означают название флоры, которое иногда пишется как «кокковая флора». По классификации все формы бактерий делятся на шаровидные, палочковидные и спиралевидные. Все бактерии шаровидной формы носят название кокковой флоры.

Эти небольшие бактерии могут встречаться в норме, а также при различных воспалительных заболеваниях. При снижении иммунитета количество кокковой флоры увеличивается, а при его хорошей работе в мазке можно обнаружить единичные кокки. При этом кокки бывают положительные, которые обозначаются как гр+, и отрицательные, которые пишутся как гр-.

Что такое гр.+ или гр.- кокки?

По другой классификации все кокки делятся на грамположительные (Гр+) и грамотрицательные (Гр-). Существует метод окраски мазков по Грамму, в честь которого назвали все кокки. К грамположительным коккам относят большую часть болезнетворных бактерий, которые остаются крашеными после промывки мазка.

К ним относятся, например, стафилококки, энтерококки, стрептококки. Грамотрицательные кокки остаются бесцветными, даже после промывки мазка спиртом, и к ним относятся кишечная палочка, гонококки, протей. К грамположительным бактериям относятся также лактобациллы (палочки Додерлейна).

Какие нормы мазка на флору?

Средние нормы мазка рассчитываются для женщин в возрасте до 50 лет и для девочек до 14 лет (способных жить половой жизнью). У маленьких девочек микрофлора мазка отличается своим составом, а также в возрасте более 50 лет у женщин меняется гормональный фон, вследствие чего нормы анализа также меняются.

Нормальная микрофлора в разных точках выглядит следующим образом:

Показатель

Влагалище

Шейка матки

Уретра

Лейкоциты

3-5 в поле зрения

5-10 в поле зрения

0-5 в поле зрения

Плоский эпителий

В умеренном количестве

В умеренном количестве

В умеренном количестве

Слизь

В умеренном количестве

В умеренном количестве

В умеренном количестве или отсутствует

Грамположительные палочки (гр+), палочки Додерлейна,

В большом количестве

отсутствуют

отсутствуют

Грамотрицательные палочки (гр-)

отсутствуют

отсутствуют

отсутствуют

Кроме этого, в мазке должны отсутствовать прочие бактерии или грибки, например, гонококки, хламидии, дрожжевые грибки рода Candida.

Если вас беспокоит насморк во время беременности, узнайте о нем подробнее здесь — //kinderok.com/beremennost/oslozhneniya-pri-beremennosti/nasmork-pri-beremennosti.html.
Статья о том, какие анализы нужно сдавать при беременности.
Всё про низкий и высокий гемоглобин при беременности и что нужно делать при пониженном и повышенном гемоглобине.

Мазок на флору при беременности

Микрофлора у каждой женщины строго индивидуальна, и в норме состоит на 95% из лактобактерий, которые вырабатывают молочную кислоту и сохраняют постоянство РН внутренней среды. Но во влагалище присутствует в норме и условно-патогенная флора. Свое название она получила потому, что становится патогенной только при определённых условиях.

Это значит, что пока во влагалище присутствует кислая среда, условно-патогенная флора не причиняет никаких неудобств и активно не размножается. К ним относятся дрожжеподобные грибки, которые при определенных условиях могут вызывать кандидоз влагалища, а также гарднереллы, стафилококки, стрептококки, которые в других условиях могут вызывать у женщины бактериальный вагиноз (воспалительный процесс).

Флора у женщины может меняться в силу самых различных причин – при снижении иммунитета, приеме антибиотиков, при общих инфекционных заболеваниях и сахарном диабете. Одним из таких факторов, который может изменить микрофлору, является изменение гормонального фона. Так, у беременной женщины до конца беременности практически не вырабатываются эстрогены, а вырабатывается в большом количестве гормон прогестерон.

Этот гормональный фон позволяет палочкам Додерлейна увеличиться в 10 раз, так организм старается предохранить плод от возможного заражения во время беременности. Поэтому очень важно до планируемой беременности пройти обследование и выявить степень чистоты влагалища. Если же этого не сделать, то во время беременности условно-патогенная флора может активироваться и вызвать различные заболевания влагалища.

Кандидоз, бактериальный вагиноз, гарднереллез, гонорея, трихомониаз – вот далеко неполный перечень заболеваний, которые ослабляют и разрыхляют стенки влагалища. Это опасно тем, что во время родов могут произойти разрывы, чего могло бы и не быть, будь влагалище чистым и здоровым. Такие заболевания, как микоплазмоз, хламидиоз и уреаплазмоз, при анализе мазка не выявляются, и обнаружить эти патогенные микроорганизмы можно только при анализе крови методом ПЦР (полимеразно-цепная реакция), с помощью специальных маркеров.

Анализ мазка у беременной женщины берется во время постановки на учет, а затем для контроля в сроке 30 и 38 недель. Обычно для оценки состояния микрофлоры влагалища медики говорят о так называемых степенях чистоты влагалища, которые женщина должна знать и следить за тем, чтобы во время беременности сохранялась необходимая степень.

Что такое степень чистоты влагалища?

Характеристики степеней чистоты выглядят следующим образом:

  1. степень чистоты – состояние женщины говорит об абсолютном здоровье. В мазке микрофлора на 95% и больше состоит из лактобактерий, также обнаруживаются единичные клетки эпителия и лейкоциты.
  2. степень чистоты – та же картина, что и при 1 степени, только в мазке могут быть обнаружены условно-патогенные бактерии в небольшом количестве.
  3. степень чистоты говорит о том, что количество условно-патогенных бактерий больше, чем палочек Додерлейна.
  4. степень чистоты – много эпителия, лейкоцитов (сплошь) и бактериальной флоры, а палочки встречаются в небольшом количестве или отсутствуют.

По мере развития степеней чистоты меняется и реакция РН влагалища. При 1-2 степенях она кислая, а при 3-4 становится слабощелочной и щелочной.

О чём может рассказать мазок на флору?

Когда женщина обращается к врачу, ее жалобы и осмотр несут в себе много информации, но не менее информативным является анализ мазка на флору. Появление некоторых элементов в мазке может не только выявить возможные заболевания, но и сделать прогноз и явиться поводом для углубленного обследования женщины.

  • Эпителиальные клетки – увеличение их количества говорит о наличии воспаления.
  • Лейкоциты – наличие небольшого количества говорит о нормоценозе, а большое количество (сплошь в поле зрения) говорит о наличии острого или хронического воспаления.
  • Слизь – в норме присутствует только во влагалище, обнаружение слизи в уретре говорит о возможном воспалении мочевыводящих путей.
  • Кокковая флора – в норме не должно быть в уретре, а во влагалище – небольшое количество. Увеличение кокковой флоры приводит к уменьшению палочковой флоры и изменению степени чистоты, что говорит о дисбиозе влагалища и наличии воспаления.
  • Гонококк – обнаружение их во влагалище говорит о наличии гонореи.
  • Трихомонада и гарднерелла – говорят о наличии трихомониаза и гарднереллеза.
  • Дрожжеподобные грибки – обнаружение их в большом количестве говорит о нарущении биоценоза и изменении степени чистоты. При этом количество палочек резко снижается, и врачи говорят о наличии кандидоза.

Таким образом, анализ мазка на флору является важным показателем работы иммунной системы, а также наличия в организме женщины дисбактриоза и хронических инфекций. При необходимости врач може сделать цитоморфологическое и бактериальное исследование выделений, которые являются специальными методами анализа.

Спорообразующие грамположительные палочки

Спорообразующие грамположительные палочки, относящиеся к роду Clostridium, с клинической точки зрения считаются наиболее важными среди анаэробов. Естественной средой обитания клостридий является почва и кишечник различных животных и человека. Некоторые виды клостридий аэротолерантны, но спорообразования в присутствии кислорода не происходит. Ежедневно с пищей человек потребляет большое количество клостридий, а содержание С. perfringens в кишечнике человека составляет 10³—108 КОЕ/г фекалий. Инфицирование при клостридиальных инфекциях возможно как эндогенное, так и экзогенное. Клиническое значение отдельных представителей рода Clostridium определяется спектром продуцируемых экзотоксинов.

Газовая гангрена и сходные заболевания

К клостридиям, продуцирующим гистотоксические экзотоксины, кроме С. perfringens относятся С. novyi, С. septicum, С. hystoliticum, С. bifermentans и ряд других. Наиболее тяжелой клинической формой клостридиальных поражений тканей является газовая гангрена (мионекроз). Микроорганизмы продуцируют ряд токсинов: альфа, бета, эпсилон и йота. Альфа-токсин — основной, он проявляет фосфолиназную, лецитиназную и гемолитическую активности, а также обладает прямыми летальным и некротизирующим эффектами. 

Клостридии являются типичными условными патогенами, поскольку они не могут пролиферировать и продуцировать токсины в интактных тканях. Основной фактор, способствующий их пролиферации, — снижение оксигенации тканей, связанное с травмами, оперативными вмешательствами, нарушением кровоснабжения. При формировании указанных условий клостридиальное поражение может развиваться практически в любом участке тела человека. 

Газовая гангрена (клостридиальный мионекроз) представляет собой прямое токсическое разрушение мышечной ткани, сопровождающееся пролиферацией микроорганизмов и накоплением газов (водорода и азота), выраженной токсинемией, в значительной части случаев наблюдают бактериемию. Наиболее типичной локализацией газовой гангрены являются мышечные массивы нижних конечностей, однако возможны и поражения гладкой мускулатуры, например миометрия, развивающиеся после криминального аборта или осложненных родов. 

Кроме газовой гангрены клостридии, продуцирующие цитотоксины, вызывают некротические процессы с газообразованием в мягких тканях без поражения мышц (крепитирующие, анаэробные целлюлиты). По тяжести течения в некоторых случаях эти процессы могут не уступать газовой гангрене. Необходимо иметь в виду, что поражения мягких тканей, сопровождающиеся крепитацией (газообразованием), могут вызывать и другие микроорганизмы (анаэробные кокки, Bacteroides spp., Fusobacterium spp.) 

Для диагностики газовой гангрены и ее дифференцировки от сходных состояний крайне информативно микроскопическое исследование мазка из очага поражения, окрашенного по Граму. Для газовой гангрены характерно наличие относительно коротких толстых грамположительных палочек, споры и капсула могут не обнаруживаться, микроорганизмы с другой морфологией или не обнаруживаются или присутствуют в незначительных количествах, признаки воспаления (лейкоциты), как правило, отсутствуют. Для анаэробных целлюлитов характерно наличие в мазке полимикробной флоры и лейкоцитарной реакции.

Если ведущая роль клостридии в развитии некротических поражений ишемизированных тканей очевидна, то значимость выделения этих микроорганизмов при полимикробных инфекциях, особенно интраабдоминальных, требует тщательной клинической и микробиологической оценки. 

При исследовании крови клостридии (С. perfringens, С. ramnosum, С. clostridioforme, С. bifermentans, С. sordelii, С. tertium и другие) нередко выделяются у пациентов после обширных оперативных вмешательств на органах брюшной полости, при онкологических процессах различной локализации, сахарном диабете, хроническом алкоголизме и др. Если при этом общее состояние пациентов не вызывает каких-либо опасений, то такие находки следует трактовать как транзиторную бактериемию, не требующую терапевтического воздействия. Некоторые особенности связаны с выделением из крови С. septicum. Наблюдается достаточно выраженная взаимосвязь между бактериемией, вызванной С. septicum, и онкологическими поражениями кишечника (лимфома, карцинома). Механизм такой взаимосвязи не известен.

Антибиотик-ассоциированные диареи и псевдомембранозный колит

Крайне важным анаэробным микроорганизмом является С. difficile, вызывающий, поражения желудочно-кишечного тракта, варьирующие от легкой диареи до крайне тяжелого псевдомембранозного колита. В патогенезе развиваемых этим микроорганизмом поражений основную роль играет продукция токсинов (А и В), обладающих прямым цитотоксическим действием, а также «субстанции, тормозящей двигательную активность кишечника». Токсинообразование наблюдают далеко не у всех штаммов. 

С. difficile считается основным патогеном, вызывающим диарею и псевдомембранозный колит на фоне антибактериальной терапии. Однако следует помнить, что этот микроорганизм с невысокой частотой (от 2 до 15%) выделяют и у здоровых людей. У пациентов, находящихся в стационарах, особенно в хирургических отделениях и в отделениях реанимации и интенсивной терапии, частота выделения С. difficile из фекалий резко возрастает (предполагается, что в результате вытеснения из кишечника антибиотикочувствительной микрофлоры), но диарея или псевдомембранозный колит развивается далеко не у всех. 

Следует признать, что факт выделения С. difficile из фекалий не всегда достаточен для установления этиологического диагноза диареи. С высокой вероятностью об этиологической значимости микроорганизма можно говорить лишь при детекции у выделенного штамма токсинообразования. 

Наиболее точным методом детекции служит исследование фильтрата чистой культуры С. difficile на наличие токсина в тесте с использованием культуры тканей. Однако метод достаточно трудоемкий и требует длительного времени. Существует также большое количество коммерческих диагностических наборов для иммунологической детекции наиболее важного токсина типа В (или обоих) непосредственно в образце фильтрата фекалий. Они основаны либо на иммуноферментных реакциях, либо на реакции агглютинации. Чувствительность и специфичность иммуноферментных тест-систем превышает 80%. Вопрос о необходимости проведения детекции токсинов в культуре ткани при получении отрицательного результата иммуноферментного исследования в настоящее время окончательно не решен. 

Несмотря на очевидную значимость С. difficile в этиологии антибиотик-ассоциированных диарей, не следует забывать о возможной роли в этиологии диареи S. aureus и С. perfringens. 

Клостридии, продуцирующие нейротоксины

Ботулизм. Ботулинический токсин относится к наиболее мощной из известных токсических субстанций, продуцируемых микроорганизмами. Его механизм действия заключается в блокаде нейромышечной передачи на уровне синапса за счет предотвращения выделения ацетилхолина. Блокада нейромышечной передачи обусловливает развитие клинической картины параличей. Выделяют 7 серотипов ботулинического токсина, вызывающих заболевание человека, других млекопитающих и птиц. Основным микроорганизмом, продуцирующим ботулинический токсин, является С. botulinum, продукция описана также у единичных штаммов С. butyricum и С. baratii, обсуждается возможность продукции отдельными штаммами С. argentinense. 

Клинически выделяют классический ботулизм, связанный с употреблением продуктов, содержащих ботулинический токсин, и ботулизм, связанный с пролиферацией возбудителя в инфицированных ранах. В Северной Америке описывают также ботулизм у новорожденных и детей младшего возраста (до 1 года), связанный с колонизацией кишечника возбудителем и продукцией токсина in vivo. 

Микробиологическая диагностики ботулизма по эффективности значительно уступает клинической. Для комплексной лабораторной диагностики ботулизма необходимо исследовать сыворотку крови больного, фекалии и, при возможности, подозрительную пищу. Несмотря на то, что С. botulinum крайне редко выделяют из фекалии здоровых людей, одного факта выделения микроорганизма из фекалий недостаточно дня установления диагноза, необходима детекция токсина в сыворотке крови. Микробиологические исследования подозрительной пищи имеют существенную ценность для расшифровки групповой заболеваемости. 

Столбняк. К токсическим поражениям относится также столбняк — патология, вызываемая столбнячным токсином (тетаноспазмином), продуцируемым С. tetani. Тетаноспазмин в отличие от ботулинического токсина действует на уровне центральной нервной системы (блокада экзоцитоза гамма-аминомасляной кислоты — негативного регулятора активности моторных нейронов). Отсутствием негативной регуляции активности моторных нейронов объясняются клинические проявления столбняка — одновременные спастические нарушения тонуса флексорных и экстензорных групп мышц. 

С. tetani широко распространены в природе, в том числе и в кишечнике млекопитающих, однако заболевание, как правило, связано с экзогенным инфицированием небольших, но глубоких ран (например, колотых, огнестрельных и т. д.). В таких ранах создаются условия для пролиферации клостридий, продукции токсина и его связывания с нервной тканью. 

Необходимости в микробиологической диагностике столбняка, как правило, не возникает, поскольку клиническая картина этой патологии достаточно характерна.

Ерюхин И.А.

Опубликовал Константин Моканов

Грамотрицательные палочки и кокки

Грамотрицательные палочки

В группу грамотрицательных анаэробных палочек, имеющих клиническое значение, включают следующие роды: Bacteroides spp., Prevotella spp., Porphyromonas spp., Fusobacterium spp. По морфологии они могут выглядеть как палочковидные или кокко-бациллярные формы. Таксономия анаэробных грамотрицательных палочек в последние годы претерпела значительные изменения. Пигментообразующие микроорганизмы выделены из рода Bacteroides и отнесены к родам Prevotella и Porphyromonas.

Грамотрицательные анаэробы являются компонентами нормальной микрофлоры человека. Некоторые из них встречаются преимущественно в дистальных отделах пищеварительное тракта (Bacteroides spp.), другие — в ротовой полости и верхних дыхательных путях (большинство из Prevotella spp., Porphyromonas spp.). 

Несмотря на то, что микроорганизмы рода Bacteroides служат основным компонентом нормальной микрофлоры толстого кишечника, они обладают определенной патогенностью (продуцируют мегаллопротеазы и энтеротоксин) и в значительной части случаев (при правильном взятии биоматериала) могут рассматриваться как истинные возбудители инфекционных процессов. В умеренном количестве бактероиды встречаются также в половых путях у женщин. В редких случаях могут быть выделены из ротовой полости и верхних дыхательных путей. 

В пределах рода Bacteroides выделяют микроорганизмы так называемой группы «Bacteroides fragilis». В этой группе В. fragilis и В. thetaiotaomicron являются наиболее частыми возбудителями интраабдоминальных инфекций и могут встречаться при инфекциях практически любой другой локализации. Не редкость выделение указанных микроорганизмов из крови и в большинстве случаев такие находки следует расценивать как клинически значимые. К группе В. fragilis относятся также более редкие бактерии: В. diatasonis, В. ovalus и некоторые другие. Бактероиды, не относящиеся к группе Bacteroides fragilis, таксономически не однородны и имеют меньшее клиническое значение. 

Большинство представителей родов Prevotella, Porphyromonas и Fusobacterium вызывают инфекционные процессы, локализующиеся выше диафрагмы в ротовой полости, голове и шее, верхних и нижних дыхательных путях. Однако известны и многие исключения, например, Prevotella bivia и Prevotella disiens чаще выделяются при воспалительных заболеваниях малого таза у женщин.

Грамотрицательные кокки

Из грамотрицательных анаэробных кокков определенное клиническое значение могут иметь лишь микроорганизмы рода Veillonella., входящие в состав нормальной микрофлоры желудочно-кишечного тракта. Отдельные виды присутствуют в основном в фекальной флоре (V. parvula), другие — в полости рта и верхних дыхательных путях. Указанные микроорганизмы выделяются при инфекциях различной локализации, однако их клиническая значимость всегда спорна.

Ерюхин И.А.

Опубликовал Константин Моканов

Строение бактериальной клетки — Википедия

Схема строения бактериальной клетки

Бактериа́льная кле́тка обычно устроена наиболее просто по сравнению с клетками других живых организмов. Бактериальные клетки часто окружает капсула, которая служит защитой от внешней среды. Для многих свободноживущих бактерий характерно наличие жгутиков для передвижения, а также ворсинок.

Для выведения веществ, в том числе факторов патогенности, в окружающую среду используются системы секреции. Клеточная стенка бактерий обычно содержит пептидогликан. По химическому составу клеточные мембраны бактерий гораздо разнообразнее мембран эукариотических клеток. В отличие от эукариот, бактерии не имеют ограниченного оболочкой ядра и, в большинстве случаев, каких-либо мембранных органелл. Вместе с тем у ряда бактерий имеются клеточные структуры, не имеющие аналогов в двух других доменах.

Геном бактерий состоит из суперскрученных кольцевых хромосом, связанных с гистонподобными белками, и меньших по размерам молекул ДНК — плазмид. Элементы цитоскелета играют важные роли в делении клеток, защите, поддержании формы и определении полярности у различных прокариот. Бактериальные рибосомы меньше рибосом эукариотического типа, но имеют сходный план строения.

Риккетсии (красные точки) в клетках млекопитающего

Как правило, размеры клеток бактерий находятся в пределах от 0,2 до 10 мкм. Существуют, однако, бактерии, видимые невооружённым глазом: клетки бактерии Epulopiscium fishelsoni, обитающей в кишечнике рыбы-хирурга, достигают до 600 мкм в длину и 100 мкм в диаметре, а клетки Thiomargarita namibiensis, населяющей прибрежные воды Намибии, достигает 400—750 мкм в диаметре[1].

Бактерий, клетки которых составляют менее 0,5 мкм в диаметре, называют нанобактериями, или ультрамикробактериями[en], они даже способны проходить через мембранные фильтры[en]. Среди ультрамикробактерий есть и свободноживущие виды, например, морская бактерия Sphingopyxis alaskensis, и непатогенные эндосимбионты, например, представители рода Holospora, размножающиеся в микро- или макронуклеусе инфузории-туфельки Paramecium caudatum. Многие ультрамикробактерии ведут паразитический образ жизни, в их числе микоплазмы, хламидии и риккетсии. Ультрамикробактерия Bdellovibrio bacteriovorus размножается в периплазматическом пространстве клеток других бактерий и питается продуктами лизиса хозяйской клетки, за что её часто относят к хищным бактериям[2].

Различные морфотипы бактерий

Форма бактериальной клетки является диагностическим признаком и применяется в их классификации. Чаще всего бактериальные клетки имеют сферическую (кокки) или палочковидную (бациллы) формы, некоторые имеют форму, промежуточную между сферической и палочковидной, и называются коккобациллами. Многие бактерии имеют нитевидную или извитую форму — в виде запятой (вибрионы), спирали (спириллы[en]) или вытянутую, закрученную наподобие спирали ДНК[en] (спирохеты)[3].

Часто бактериальные клетки образуют устойчивые сочетания, такие как пары палочек (диплобациллы) или кокков (диплококки), цепочки палочек (стрептобациллы) или кокков (стрептококки), тетрады, пакеты из 4, 8 и более кокков (сарцины), гроздья (стафилококки). Некоторые бактерии образуют розетки, плоские таблички, сети, а также прямые или ветвящиеся трихомы — цепочки плотно примыкающих друг к другу клеток.

Известны бактерии с клетками весьма необычной формы (например, звёздчатые), некоторые бактерии (Corynebacterium[en]*, Mycobacterium, Nocardia[en]) меняют морфологию в течение жизненного цикла. Актинобактерии формируют мицелий, представители рода Hyphomicrobium образуют гифы с почками[4]. Клетки некоторых бактерий (например, Caulobacter) несут стебельки и прочие придатки[5].

Две делящиеся клетки Caulobacter crescentus под микроскопом, виды стебельки на одном полюсе клеток и жгутики на противоположном

В отличие от многоклеточных организмов, у одноклеточных организмов (и бактерий в том числе) рост, то есть увеличение клетки в размерах, и размножение путём деления клеток тесно связаны[6]. Обычно бактериальные клетки делятся на две равноценные дочерние клетки. Сначала клетка удлиняется, в ней образуется поперечная перегородка. На завершающем этапе дочерние клетки расходятся. Отличительной чертой деления бактериальных клеток является непосредственное участие реплицированной ДНК в процессе деления[7]. В связи с тем, что в подавляющем большинстве случаев прокариотические клетки имеют клеточную стенку, бинарное деление сопровождается формированием септы — перегородки между дочерними клетками, которая затем расслаивается посередине. Процесс деления прокариотической клетки подробно изучен на примере E. coli[8].

В то же время есть примеры неравноценного деления. Например, у грамотрицательной бактерии Caulobacter crescentus[en] одна из дочерних клеток подвижная, у неё есть один жгутик для хемотаксиса. Вторая клетка остаётся прикреплённой к субстрату «стебельком». Подвижные клетки дифференцируются в клетки со стеблем после короткого периода свободного плавания. Репликация хромосом и деление клеток происходят только на стадии прикреплённой клетки[9].

В оптимальных условиях бактерии растут и делятся очень быстро, описан пример морской псевдомонады, популяция которой может удваиваться каждые 9,8 минуты[10].

Структурная формула гопена — соединения группы гопаноидов

Как любая живая клетка, бактериальная клетка окружена мембраной, которая представляет собой липидный бислой (её ещё называют цитоплазматической мембраной). Клеточная мембрана поддерживает осмотический баланс клетки, осуществляет разные виды транспорта, в том числе секрецию белков, задействована в образовании клеточной стенки и биосинтезе внеклеточных полимеров, а также получает регуляторные сигналы из внешней среды. Во многих случаях клеточная мембрана может участвовать в синтезе АТФ за счёт трансмембранного электрохимического градиента (протондвижущей силы). Мембрана бактериальной клетки участвует в репликации и разделении дочерних бактериальных хромосом при делении клетки, а также в передаче ДНК посредством трансдукции или конъюгации[11].

Помимо липидов, в состав бактериальных мембран входят различные белки. По химическому составу клеточные мембраны бактерий гораздо разнообразнее мембран эукариотических клеток. Мембранные липиды архей представлены ацил[en]- и алкилсодержащими глицеролипидами (в том числе фосфолипидами), а также полиизопреноидами. В отличие от эукариот, меняющих свойства липидного остова мембраны за счёт изменения соотношения между фосфолипидами и холестерином, бактерии изменяют свойства мембраны, варьируя жирные кислоты, входящие в состав липидов. Стероиды обнаруживаются в бактериальных мембранах чрезвычайно редко, и вместо стероидов мембраны содержат гопаноиды, представляющие собой пентациклические[en] углеводороды. Гопаноиды активно участвуют в регуляции физических свойств мембран бактериальных клеток[12].

Схема строения клеточной стенки грамотрицательной (сверху) и грамположительной (снизу) бактерий. Сверху: 1 — клеточная мембрана, 2 — периплазматическое пространство, 3 — внешняя мембрана, 4 — фосфолипид, 5 — пептидогликан, 6 — липопротеин, 7 — белок, 8 — липополисахарид, 9 — порины. Снизу: 1 — клеточная мембрана, 2 — пептидогликан, 3 — фосфолипид, 4 — белок, 5 — липотейхоевая кислота

В зависимости от типа строения клеточной стенки бактерии подразделяют на грамположительные и грамотрицательные (названия группам были даны вследствие их разного окрашивания по методу Грама). Большинство бактериальных клеток окружены жёсткой клеточной стенкой, состоящей из полимера пептидогликана, также известного как муреин. Пептидогликан состоит из полисахаридных цепей, скреплённых короткими пептидными сшивками. В большинстве случаев клеточная стенка жизненно необходима для бактерии, поэтому антибиотики, блокирующие её образование (формирование) (например, пенициллин), эффективны против самых разных бактерий. В старых культурах и при несбалансированном росте грамотрицательных бактерий появляются так называемые сферопласты — клетки, лишённые клеточной стенки или имеющие дефекты в ней. Однако, в отличие от протопластов, они взаимодействуют с бактериофагами, размножаются и при благоприятных условиях возвращаются в нормальное состояние. Сферопласты патогенных бактерий называются L-формами, которые получаются в лабораториях в отсутствие клеточной стенки только в изотонических растворах[13][14][15]. Некоторые бактерии, паразитирующие внутри эукариотических клеток, например, микоплазма, не имеют клеточной стенки[16].

Клеточная стенка механически стабилизирована и противостоит внутреннему давлению (тургорному давлению) бактериальной клетки, которое составляет от 2 до 25 атм[17]. Кроме того, она играет ключевую роль в поддержании формы бактериальной клетки[18]. Через слой пептидогликана, имеющий небольшие отверстия, могут проходить только относительно небольшие молекулы (массой до 50—60 кДа), причём размер проникающих молекул не зависит от толщины слоя пептидогликана. В связи с этим в тех случаях, когда через слой пептидогликана должны пройти большие молекулы, такие как белки жгутиков, пилей и ДНК при конъюгации, специфические гидролазы пептидогликана локально расширяют отверстия для их прохода[17].

Химическое строение[править | править код]

Упрощённая схема строения пептидогликана

Гликановые цепи пептидогликана обычно состоят из повторяющегося дисахарида N-Ацетилглюкозамин-N-Ацетилмурамовой кислоты (NAG-NAM). В среднем нить образована 30 дисахаридами, но их количество может варьировать. К NAM присоединяется короткий пептид, состоящий из аминокислот D-глутаминовой кислоты, D-аланина и диаминопимелиновой кислоты (DAP) и синтезируемый вне рибосом. Аминогруппы DAP участвуют в образовании сшивок между полисахаридными цепями пептидогликана. При образовании сшивок последний D-аланин пептида высвобождается. У некоторых бактерий в пептидных мостиках присутствуют другие аминокислоты, а у грамположительных бактерий гликановые нити могут также соединяться с одним или несколькими остатками глицина в пептидных мостиках[19].

Грамположительные бактерии[править | править код]

Окрашивание по Граму. Грамположительные кокки окрашены фиолетовым цветом, а грамотрицательные палочки — розовым

У грамположительных бактерий поверх мембраны есть (от 20 до 50 нм) оболочка из пептидогликана толщиной до 40 молекулярных слоёв[20]. Их положительная окраска по методу Грама связана с тем, что их толстая пептидогликановая клеточная стенка прочно связывает комплекс красителя генцианвиолета[en] с йодом, который не вымывается. Поэтому на препаратах грамположительные бактерии выглядят фиолетовыми (у грамотрицательных бактерий этот комплекс вымывается, и они приобретают цвет второго красителя, например сафранина)[21].

Кроме пептидогликана, в клеточной стенке грамположительных бактерий имеются тейхоевые кислоты, которые закрепляются на поверхности клетки, образуя связи с пептидогликаном. Липотейхоевые кислоты взаимодействуют с остатками жирных кислот клеточной мембраны. Тейхоевые и липотейхоевые кислоты представляют собой полианионы, состоящие из повторяющихся звеньев в виде фосфорилированных сахаров или остатков глицерина. Фосфатные группы в составе тейхоевых кислот могут быть заменены на глюкоуронат, в результате чего образуются тейхуроновые кислоты. Синтез тейхуроновых кислот запускается при фосфорном голодании. Блокировка синтеза тейхоевых кислот приводит к гибели бактерий, однако конкретные функции этих соединений точно не установлены[22]. Высказываются предположения, что они действуют наподобие пружин, делая возможным растяжение и сжатие клеточной стенки. Кроме того, за счёт своей полианионной природы тейхоевые кислоты прочно связывают ионы магния, поэтому могут выполнять в клетке роль ионообменника[23].

Поскольку у грамположительных бактерий слой пептидогликана не прикрыт сверху мембраной, перед ними стоит проблема удержания поверхностных белков. В ряде случаев поверхностные белки при помощи специальных ферментов пришиваются к фосфолипидам клеточной мембраны с образованием липопротеинов. Кроме того, поверхностные белки могут закрепляться на поверхности клетки за счёт связывания с пептидогликаном, которое обеспечивается ферментом сортазой[en]. Белки, предназначенные к связыванию с пептидогликаном, несут на N- и C-концах характерные последовательности, например, на N-конце находится сигнальный пептид, благодаря которому белок проходит через клеточную мембрану. Вблизи C-конца находится мотив, распознаваемый сортазой; в него вносится разрыв, после чего белок с отрезанным C-концевым фрагментом ковалентно пришивается к пептидогликану амидной связью[24].

У микобактерий, нокардий и коринебактерий 30 % вещества клеточной стенки составляют липиды, причём у некоторых микобактерий в ней также образованы воски. Такую обогащённую липидами клеточную стенку иногда называют микомембраной. Микомембрана защищает бактерий от неблагоприятных условий среды и антимикробных препаратов[25]. У бактерий родов Mycobacterium, Nocardia, Corynebacterium, Rhodococcus[en] и Caseobacter в клеточной стенке обнаруживаются миколовые кислоты. Помимо полисахаридов, у ряда патогенных грамположительных бактерий в клеточных стенках присутствуют белки, например, белок А у стафилококков, который служит важным антигеном. Кроме того, с клеточной стенкой временно, перед высвобождением в окружающую среду, связываются энтеротоксины[en][26].

Грамотрицательные бактерии[править | править код]

Подробная схема строения клеточной стенки грамотрицательных бактерий

У грамотрицательных бактерий поверх клеточной мембраны тоже залегает слой пептидогликана, однако он значительно (почти в 40 раз[17]) тоньше, чем у грамположительных бактерий, и прикрыт сверху второй мембраной. Клеточная и наружная мембраны отличаются по химическому составу. Пространство между клеточной и наружной мембранами называется периплазматическим пространством (периплазмой)[27].

В периплазматическом пространстве находится много разнообразных белков: разрушающие биологические молекулы ферменты, транспортные белки, белки, участвующие в метаболизме, а также шапероны, которые регулируют пространственную структуру других белков, защищают их от протеолиза и нежелательных взаимодействий с другими белками. Например, в периплазме происходит образование дисульфидных мостиков и цис-транс-изомеризация пролина, которая является частью процесса созревания белка. Некоторые шапероны периплазмы участвуют в сборке ворсинок. Если под действием стрессовых условий в периплазме происходит агрегация[en] неуложенных белковых молекул, то активируется система Cpx. Она состоит из белка CpxA, заякоренного в клеточной мембране, и связанного с ним белка CpxP, который обращён в периплазму. CpxP взаимодействует с неуложенными белками и покидает CpxA, который при этом подвергается аутофосфорилированию[en] и далее переносит фосфатную группу на цитоплазматический белок CpxR. Фосфорилированный CpxR запускает экспрессию генов стрессового ответа[28]. По мере роста клетки в периплазматическом пространстве накапливаются продукты метаболизма пептидогликана, которые клетка использует повторно[29].

Строение липополисахарида

Наружная мембрана состоит из двух асимметричных слоёв: внутренний слой, обращённый к клетке, состоит из фосфолипидов, а внешний — из липополисахаридов. Внутренний слой почти на 90 % состоит из фосфатидилэтаноламина[13]. Липополисахариды содержат О-полисахарид, коровый полисахарид и остаток липида А[en]. О-полисахарид, как правило, состоит из повторяющихся остатков галактозы, глюкозы, рамнозы и маннозы. Центральный (коровый) полисахарид состоит из N-ацетилглюкозамина, глюкозамина, фосфата, гептозы и кетодезоксиоктоната. Липополисахариды токсичны для животных и являются важнейшими антигенами, активирующими иммунную систему в ответ на бактериальное заражение[30]. Наружная мембрана связана со слоем пептидогликана при помощи липопротеинов, N-концы которых связаны с жирными кислотами и погружены во внешнюю мембрану, а C-концы связаны с пептидогликаном. Во внешней мембране имеются белки-порины[en], а также белки, связанные со сборкой поверхностных структур, конъюгацией и секрецией белковых молекул[31].

От наружной мембраны могут образовываться так называемые везикулы наружной мембраны, имеющие диаметр от 20 до 500 нм. В отпочковывании везикул принимает участие цитоскелет. Образование везикул может быть вызвано тем, что при росте клетки наружная мембрана увеличивается быстрее пептидогликанового слоя, а может вызываться особыми внешними условиями, например, у Porphyromonas gingivalis[en] образование везикул запускается нехваткой гемина[en]. Стенка везикул состоит из наружной мембраны, и при отпочковывании она может захватывать содержимое периплазмы. Так, у Pseudomonas aeruginosa везикулы наружной мембраны содержат периплазматические ферменты, в числе которых гемолизин, пептидогликан-гидролазы, протеазы, проэластазы, щелочная фосфатаза и фосфолипаза C, а также β-лактамаза, которая позволяет бактериям гидролизовать β-лактамные антибиотики и в периплазме, и во внешней среде. Везикулы наружной мембраны могут также служить для доставки ферментов и фрагмента наружной мембраны к клеткам-мишеням или в необходимый участок внешней среды[32].

В клетке грамотрицательной бактерии имеется от 200 до 400 зон слипания между наружной и клеточной мембранами, которые называют контактами Байера. В области контактов Байера в пептидогликановом слое имеется крупное отверстие, благодаря чему наружная и клеточная мембраны могут сблизиться вплотную. Адгезию мембран могут обеспечивать компоненты некоторых экспортных комплексов. Контакты Байера могут служить для выделения наружу различных молекул, например, субъединиц пилей, кроме того, к ним прикрепляются некоторые бактериофаги[33].

Из-за наличия дополнительного барьера проницаемости (наружной мембраны) для достижения необходимого эффекта грамотрицательные бактерии требуют больших концентраций антибиотиков, чем грамположительные бактерии. Наружная мембрана обеспечивает взаимодействия клеток друг с другом, с клетками организма-хозяина (при патогенезе) и с поверхностью субстрата. Она удерживает такие внешние структурные образования, как пили[29].

У цианобактерий поверх слоя пептидогликана располагается внешняя мембрана, однако с пептидогликаном ковалентно связаны полисахариды, из-за которых, судя по всему, цианобактерии окрашиваются по Граму положительно. Кроме того, наружная мембрана цианобактерий содержит каротиноиды[21].

Формирование клеточной стенки[править | править код]

Синтез пептидогликана протекает в несколько этапов. Дисахариды его гликановых цепей синтезируются в цитозоле, начиная с уридин-5-дифосфата[en]-NAM (УДФ-NAM). Синтез пептида начинается на NAM. Он формируется последовательно, присоединение каждой аминокислоты катализируется определённым ферментом. Наконец, пентапептид, связанный с УДФ-NAM, присоединяется к особому липиду клеточной мембраны — бактопренолу[en]. Далее к УДФ-NAM присоединяется NAG, УДФ высвобождается, и всё звено, включающее NAM, NAG и пептид, переворачивается и становится обращённым во внешнюю среду, а не в цитоплазму. Поперечные сшивки образуются с участием ферментов DD-транспептидаз[en] (которые ингибируются пенициллином), которые катализируют реакцию транспептидации, сопровождающуюся высвобождением остатка D-аланина. Образование гликановых цепей катализируют трансгликозилазы, кроме того, имеются бифункциональные ферменты, обладающие и трансгликозилазной, и транспептидазной активностями[19].

Согласно одной из предложенных моделей, при росте клетки в клеточную стенку сначала добавляются новые нити, и лишь потом происходит разрыв старых связей. У большинства бактерий в клеточной стенке находится множество ферментов автолиза, которые разрушают различные химические связи в пептидогликане[34].

Под системами секреции у бактерий понимают белковые комплексы, расположенные в клеточной мембране бактерий и служащие для выведения во внешнюю среду различных веществ. В частности, их используют патогенные бактерии для выделения факторов вирулентности[en] (преимущественно белковой природы). На основании состава, структура и действия системы секреции делят на несколько типов. Существует по меньшей мере шесть типов систем секреции, специфичных для грамотрицательных бактерий, четыре типа систем секреции уникальны для грамположительных бактерий, а два типа систем секреции имеются у обеих групп бактерий. Типы бактериальных систем секреции и их основные свойства приведены в таблице ниже[25].

Система секреции Сигнал секреции Количество этапов секреции Уложен ли субстрат Количество мембран Грам(+) или грам(-)
Sec N-концевой 1 Нет 1 Обе группы
Tat N-концевой 1 Да 1 Обе группы
I тип C-концевой 1 Нет 2 Грам(-)
II тип N-концевой 2 Да 1 Грам(-)
III тип N-концевой 1—2 Нет 2—3 Грам(-)
IV тип C-концевой 1 Нет 2—3 Грам(-)
V тип N-концевой 2 Нет 1 Грам(-)
VI тип Неизвестен 1 Неизвестно 2—3 Грам(-)
SecA2 N-концевой 1 Нет 1 Грам(+)
Сортазы N-концевой (Sec)
C-концевой (cws)
2 Да 1 Грам(+)
Инжектосомы N-концевой 2 Да 1 Грам(+)
VII тип C-концевой 1 Да 1—3 Грам(+)

Капсула[править | править код]

Клетки Streptococcus pneumoniae с капсулами, визуализированными при помощи Quellung-реакции. Обратите внимание, что две бактерии в верхней части фотографии не имеют капсулы

У многих бактерий поверх клеточной стенки или внешней мембраны залегает капсула, состоящая из экзополисахаридов[en]. Структурной основой капсулы служат линейные или разветвлённые полигликаны и олипептиды, состоящие из одинаковых или разных мономеров. У непатогенных бактерий капсулы служат для защиты высыхания, например, именно благодаря капсуле цианобактерии рода Nostoc могут расти в пустыне. У патогенных бактерий капсула резко увеличивает вирулентность, так как иммунная система плохо справляется с бактериями, покрытыми капсулой: они плохо связываются с антителами и не поддаются фагоцитированию[35].

S-слой[править | править код]

Поверхность некоторых бактерий (как грамположительных, так и грамотрицательных) покрыта S-слоем, состоящим из упорядоченно уложенных белковых субъединиц. У бактерий очень редки случаи, когда S-слой является единственной плотной оболочкой, обычно он сосуществует вместе с пептидогликановой клеточной стенкой. S-слой не играет формообразующей роли и часто утрачивается бактериями, растущими в лабораторных условиях. Сборка S-слоя начинается с того, что его белковые субъединицы секретируются в экзоплазматический компартмент, где они спонтанно агрегируют, связываясь друг с другом гидрофобными, водородными и электростатическими связями. S-слой обеспечивает механическую защиту бактериальной клетки, препятствует попаданию в клетку экзогенных молекул, взаимодействует с бактериофагами. У патогенных бактерий S-слой является важным фактором вирулентности[36].

Жгутик[править | править код]

Схема строения бактериального жгутика

Большинство бактерий подвижны, и их подвижность обеспечивается одним или нескольким жгутиками, которые представляют собой поверхностные белковые структуры. Расположение жгутиков на клетке может быть различным. У монотрихов имеется только один жгутик, у лофотрихов на одном из полюсов клетки находится пучок жгутиков, у амфитрихов на противоположных полюсах клетки находится по одному жгутику, а у перитрихов многочисленные жгутики разбросаны по всей поверхности клетки. Длина жгутика варьирует, но диаметр обычно составляет 20 нм[37].

Основание бактериального жгутика представлено базальным телом, состоящим из двух (у грамположительных) или четырёх (у грамотрицательных бактерий) белковых колец, стержня и моторных белков. От базального тела отходит крючок, переходящий в , который завершается «шапочкой». Филамент представляет собой жёсткий цилиндр, образованный белком флагеллином. В клеточной мембране находятся кольца M и S, которые часто рассматривают как единое целое. MS-кольцо окружено несколькими моторными белками, которые передают вращающий момент на филамент. У грамотрицательных бактерий, помимо колец M и S, есть ещё два кольца: P, залегающее в пептидогликановом слое, и L, находящееся во внешней мембране. Через все кольца проходит жёсткий стержень, передающий вращающий момент на филамент[38].

При сборке жгутика сначала в мембране клетки появляется MS-кольцо, к которому прикрепляются моторные белки, далее формируются P- и L-кольца (у грамотрицательных бактерий), крючок и филамент. В такой же последовательности запускается экспрессия генов, кодирующих белки соответствующей части жгутика[39]. Через полое внутреннее пространство базального тела новые флагеллиновые субъединицы поступают к вершине растущего жгутика, где самоорганизуются по спирали. Чтобы субъединицы флагеллина не уходили во внешнюю среду, конец растущего филамента прикрыт «шапочкой», которая не даёт им покинуть жгутик. В среднем зрелый филамент состоит из около 20 тысяч молекул флагеллина, а белки жгутика кодируются более чем 30 генами[40].

Вероятно, движущей силой вращения жгутика у бактерий является протонный градиент. Поток протонов, проходящий через кольца M и S или между базальным телом и клеточной мембраной, запускает вращение жгутика[41].

Движение клетки происходит за счёт вращения жгутика по часовой стрелке или против неё. У монотрихов клетка медленно вращается в направлении, противоположном вращению жгутика. Если жгутик вращается по часовой стрелке, то клетка движется жгутиком вперёд, а если против, то клетка выталкивается жгутиком вперёд (то есть движется жгутиком назад). Некоторые бактерии, имеющие единственный жгутик, вращают его только по часовой стрелке, и, чтобы сменить направление движения, им нужно остановиться и переориентироваться. У перитрихов жгутики вращаются против часовой стрелки, и, если нужно сменить направление движения, клетка останавливается и совершает кувырок[41].

У некоторых бактерий рода Vibrio (в частности, Vibrio parahaemolyticus[en][42]) и некоторых протеобактерий, таких как Aeromonas, имеются две различные жгутиковые системы, белковые компоненты которых кодируются различными наборами генов, а для вращения используются разные ионные градиенты. Полярные жгутики, относящиеся к первой жгутиковой системе, присутствуют постоянно и обеспечивают подвижность в потоке жидкости, а боковые жгутики, относящиеся ко второй жгутиковой системе, экспрессируются только тогда, когда сопротивление окружающей жидкости так велико, что полярные жгутики не могут вращаться. Благодаря этому бактерии могут скользить по различным поверхностям и в вязкой жидкости[43][44][45][46][47][48].

Пили[править | править код]

Клетки E. coli с многочисленными пилями

Пили (также известны как фимбрии или ворсинки) — нитевидные белковые структуры, расположенные на поверхности клеток многих бактерий. Размер пилей варьирует от долей мкм до более чем 20 мкм в длину и 2—11 нм в диаметре. Пили участвуют в передаче генетического материала между бактериальными клетками (конъюгация), прикреплении бактерий к субстрату и другим клеткам, отвечают за адаптацию организмов, служат местами прикрепления многих бактериофагов. Структурно пили могут быть от тонких нитевидных образований до толстых палочкообразных структур с осевыми отверстиями. Пили состоят из одного или нескольких типов спирально уложенных белковых молекул, которые называют пилинами[en] или фимбринами[49]. В образовании пилей, помимо самих белков-пилинов, участвуют дополнительные белки, способствующие правильной сборке. У грамотрицательных бактерий они должны пройти через клеточную мембрану, периплазматическое пространство и наружную мембрану[50].

Прочие внеклеточные структуры[править | править код]

Иногда слизистая структура окружает не отдельную клетку, как в случае капсулы, а скопление клеток, и тогда покровную слизистую структуру называют чехлом. Чехлы могут покрывать не только вегетативные клетки, но и другие варианты дифференцированных клеток, например, покоящиеся структуры (цисты, эндоспоры, гетероцисты). Чехлы имеются, например, у внутриклеточных п

Грамположительные бактерии - это... Что такое Грамположительные бактерии?

Грамположительные бактерии сибирской язвы (фиолетовые палочки) в образце цереброспинальной жидкости. Другие клетки — белые кровяные тельца.

Грамположительные бактерии (обозначаются Грам (+)) — бактерии, которые, в отличие от грамотрицательных бактерий, сохраняют окраску, не обесцвечиваются при промывке при использовании окраски микроорганизмов по методу Грама.

Большинство Грам (+) бактерий имеют однослойную клеточную мембрану, без внешней мембраны, присущей грамотрицательным бактериям. Исключением является тип Deinococcus-Thermus.

Патогенность

Большая часть патогенных для человека микроорганизмов относится к Грам +. Шесть родов Грам + организмов являются типичными патогенами человека. Два из них стрептококки и стафилококки являются кокками (шарообразными бактериями). Остальные — палочковидные и делятся далее по возможности образовывать споры. Неспорообразующие: Corynebacterium и Листерия; спорообразующие: Бациллы и Клостридии. Спорообразующие можно разделить на факультативных анаэробов Бациллы и облигатных анаэробов Клостридий.

История термина

В ранних классификациях грам-положительные бактерии составляли тип Firmicutes, но сейчас этот термин используется только для одной, хотя и крупнейшей, их группы. Тип Firmicutes включает много известных родов, таких как Bacillus, Listeria, Staphylococcus, Streptococcus, Enterococcus и Clostridium. Сейчас этот тип также включает Mollicutes, бактерии, подобные микоплазмам, которые совсем не имеют бактериальной клеточной стенки и поэтому не окрашиваются по Граму, но имеют общее происхождение с грамположительными формами.

Другая главная группа грамположительных бактерий — тип Actinobacteria, или группа грамположительных бактерий с высоким содержанием G+C (с содержанием гуанозина и цитозина в ДНК), в отличие от Firmicutes, имеющих низкое содержание G+C. Исторически считалось, что если вторая мембрана — приобретённый признак, обе группы могут быть основными на филогенетическом дереве бактерий, иначе они, вероятно, относительно недавняя монофилетическая группа. В некоторый момент их даже рассматривали как возможных предков архей и эукариот, из-за отсутствия второй мембраны и из-за некоторых биохимических признаков, например, присутствия стеролов. С появлением молекуляроной филогенетики, основанной на анализе 16S рРНК, грам-положительные бактерии были окончательно разделены на Firmicutes и Actinobacteria.


Смотрите также

От вздутия живота народные средства

От Вздутия Живота Народные Средства

Народные средства от вздутия живота Вздутие живота или метеоризм характеризуется излишним скоплением газов в кишечнике, которое может вызывать болезненные… Подробнее...
Заболевания вызывающие тошноту, диарею и повышенную температуру тела

Температура Понос Тошнота

Заболевания вызывающие тошноту, диарею и повышенную температуру тела Каждый хоть однажды сталкивался с такими неприятными симптомами, как температура, понос,… Подробнее...
Почему у ребенка зеленый понос

Понос Зеленый У Ребенка

Почему у ребенка зеленый понос Появление у ребенка зеленого поноса часто вводит в панику его родителей. Не зная причину появления поноса зеленого цвета, в… Подробнее...
Какие болезни сопровождаются поносом и рвотой

Температура Понос Рвота У Ребенка

Какие болезни сопровождаются поносом и рвотой У маленького ребенка еще только формируется защитная система организма, и… Подробнее...
Лекарство от вздутия живота

Лекарство От Вздутия Живота

Чем снять вздутие живота Вздутие живота, как его называют врачи, метеоризм, — неприятная, а главное, исключительно… Подробнее...
Причины поноса после еды

После Еды Сразу Иду В Туалет По Большому - Понос

Причины поноса после еды Некоторый жалуются, что после еды сразу идут в туалет по-большому из-за поноса. Такая… Подробнее...
Понос после арбуза

Понос После Арбуза

Какие продукты могут вызвать понос Расстройство пищеварения может возникнуть не только как реакция на отравление, но и… Подробнее...
Первая помощь ребенку при рвоте

Рвота У Ребенка Без Температуры И Поноса Что Делать - 3 Года

Первая помощь ребенку при рвоте Дети до 5 лет являются самой восприимчивой к различным вирусам и бактериям группой.… Подробнее...