Компоненты межклеточного вещества


Межклеточное вещество: строение и функции

Неотъемлемой часть любого живого организма, который только можно встретить на планете, является межклеточное вещество. Оно образовывается из известных нам компонентов – плазмы крови, лимфы, коллагеновых белковых волокон, эластина, матрикса и так далее. В любом организме клетки и межклеточное вещество неразрывно связаны между собой. И сейчас мы подробно рассмотрим состав этой субстанции, ее функции и особенности.

Общие данные

Итак, межклеточное вещество – это один из многочисленных видов соединительной ткани. Оно присутствует в различных частях нашего организма, и в зависимости от местонахождения меняется и его состав. Как правило, такая связующая субстанция выделяется опорно-трофическими тканями, которые отвечают за целостность работы всего организма. Состав межклеточного вещества можно также охарактеризовать в общем. Это плазма крови, лимфа, белковые, ретикулиновые и эластиновые волокна. В основе этой ткани лежит матрикс, который также называют аморфным веществом. В свою очередь матрикс состоит из очень сложного набора органических веществ, клетки которых по размерам крайне малы по сравнению с основными известными микроскопическими элементами организма.

Особенности связующей ткани

Образуемое межклеточное вещество в тканях является результатом их деятельности. Именно поэтому его состав зависит от того, какую часть организма мы рассматриваем. Если говорить о зародыше, то в данном случае тип вещества будет единым. Тут оно появляется из углеводов, белков, липидов и эмбриальной соединительной ткани. В процессе роста организма более разнообразными по своим функциям и наполнению становятся и его клетки. Вследствие этого меняется и межклеточное вещество. Его можно встретить в эпителии и в недрах внутренних органов, в костях человека и в его хрящах. И в каждом случае мы найдем индивидуальный состав, определить принадлежность которого сможет лишь знающий биолог или медик.

Самое важное волокно организма

В организме человека межклеточное вещество соединительной ткани выполняет основную опорную функцию. Оно не отвечает за работу конкретного органа или системы, а поддерживает жизнедеятельность и взаимосвязь всех составляющих человека или животного, начиная от самых глубоких органов и заканчивая дермой. В среднем данный связующий компонент представляет собой от 60 до 90 процентов массы всего тела. Иными словами, данная субстанция в организме является опорным каркасом, который обеспечивает нам жизнедеятельность. Такое вещество делится на множество подвидов (см. ниже), структура которых схожа между собой, но не полностью идентична.

Копнем еще глубже – «матрица»

Само же межклеточное вещество соединительной ткани – это матрикс. Он выполняет транспортную функцию между различными системами в организме, служит ему опорой и при необходимости передает различные сигналы от одних органов к другим. Благодаря этому матриксу в человеке или в животном происходит обмен веществ, он участвует в локомоции клеток, а также является важной составляющей их массы. Также важно отметить, что в процессе эмбриогенеза многие клетки, которые ранее были самостоятельными или относились к определенной внутренней системе, становятся частью этой субстанции. Основными составляющими матрикса является гиалуроновая кислота, протеогликаны и гликопротеины. Одним из самых ярких представителей последних является коллаген. Этот компонент наполняет собой межклеточное вещество и встречается буквально в каждом, даже самом маленьком уголке нашего организма.

Внутреннее строение скелета

Сформировавшиеся кости нашего организма состоят полностью из клеток-остеоцитов. Они имеют заостренную форму, большое и твердое ядро и минимум цитоплазмы. Обмен веществ в таких «закаменевших» системах нашего тела производится благодаря костным канальцам, которые выполняют дренажную функцию. Само же межклеточное вещество костной ткани образуется лишь в период формирования кости. Этот процесс осуществляется благодаря клеткам-остебластам. Они, в свою очередь, после завершения формирования всех тканей и соединений в подобной структуре разрушаются и прекращают свое существование. Но на начальных этапах данные костные клетки выделяют межклеточное вещество посредством синтеза белка, углеводов и коллагена. После того как матрикс ткани сформирован, клетки начинают производить соли, которые превращаются в кальций. В данном процессе остеобласты как бы блокируют все обменные процессы, которые происходили внутри них, останавливаются и отмирают. Прочность скелета теперь поддерживается за счет того, что функционируют остеоциты. Если же случается какая-либо травма (перелом, к примеру), то остеобласты возобновляются и начинают вырабатывать межклеточное вещество костной ткани в больших количествах, что дает возможность организму справиться с недугом.

Особенности строения крови

Каждый прекрасно знает, в состав нашей красной жидкости входит такой компонент, как плазма. Она обеспечивает необходимую вязкость, возможность оседания крови и многое другое. Таким образом, межклеточное вещество крови – это и есть плазма. Макроскопически представляет она собою вязкую жидкость, которая либо прозрачная, либо имеет легкий желтоватый оттенок. Плазма всегда собирается в верхней части сосуда после осаждения других основных элементов крови. Процентное содержание такой межклеточной жидкости в крови – от 50 до 60%. Основу самой же плазмы составляет вода, в которой содержатся липиды, белки, глюкоза и гормоны. Также плазма впитывает в себя все продукты переработки обмена веществ, которые после утилизируются.

Виды белков, которые находятся в нашем организме

Как мы уже поняли, строение межклеточного вещества основывается на белках, которые являются конечным продуктом работы клеток. В свою очередь эти белки можно поделить на две категории: те, которые обладают адгезивными свойствами, и те, которые устраняют адгезию клеток. К первой группе главным образом мы относим фибронектин, который является основной матрикса. За ним следуют нидоген, ламинин, а также фибриллярные коллагены, которые образуют волокна. По этим канальцам транспортируются различные вещества, которые обеспечивают обмен веществ. Вторая группа белков – это антиадгезивные компоненты. В их состав входят различные гликопротеины. Среди них назовем тенасцин, остеонектин, тромпоспондин. Данные компоненты отвечают в первую очередь за заживление ран, повреждений. Они в большом количестве вырабатываются также во время инфекционных заболеваний.

Функциональность

Очевидно, что роль межклеточного вещества в любом живом организме весьма велика. Данная субстанция, состоящая преимущественно из белков, образуется даже между самыми твердыми клетками, которые находятся друг от друга на минимальном расстоянии (костная ткань). Благодаря своей гибкости и канальцам-проводникам в этой «полужидкости» происходит обмен веществ. Сюда могут выделяться продукты переработки основных клеток, или же поступать полезные компоненты и витамины, которые только что попали в организм с пищей или другим путем. Межклеточное вещество пронизывает наш организм полностью, начиная с кожи и заканчивая оболочкой клеток. Именно поэтому как западная медицина, так и восточная давно уже пришли к выводу о том, что все в нас взаимосвязано. И если повреждается один из внутренних органов, то это может оказать влияние на состояние кожи, волос, ногтей, или же наоборот.

Вечный двигатель

Присутствующее межклеточное вещество в тканях нашего организма буквально обеспечивает его жизнедеятельность. Оно делится на множество различных категорий, может иметь различную молекулярную структуру, а в некоторых случаях разнятся и функции вещества. Что же, рассмотрим, какие бывают типы такой соединительной материи и что характерно для каждого из них. Упустим мы тут, пожалуй, только плазму, так как ее функции и особенности мы уже достаточно изучили, и повторяться не станем.

Межклеточное простое соединение

Прослеживается между клетками, которые находятся на расстоянии от 15 до 20 нм друг от друга. Связующая ткань в таком случае свободно располагается в данном пространстве и не препятствует проходу полезных веществ и отходов работы клеток по своим канальцам. Одной из наиболее знаменитых разновидностей такой связи является «замок». В таком случае билипидные мембраны клеток, находящихся в пространстве, а также часть их цитоплазмы сдавливаются, образуя прочную механическую связь. По ней и проходят различные компоненты, витамины и минералы, которые обеспечивают работу организма.

Межклеточное плотное соединение

Наличие межклеточного вещества не всегда обозначает, что сами клетки находятся на огромном расстоянии друг от друга. В данном случае при подобном их сцеплении плотно сживаются мембраны всех составляющих отдельной системы организма. В отличие от предыдущего варианта - «замка», где клетки также соприкасаются, - тут подобные «влипания» препятствуют прохождению различных веществ по волокнам. Стоит отметить, что подобный тип межклеточного вещества наиболее надежно защищает организм от окружающей среды. Чаще всего столь плотное слияние клеточных мембран можно встретить в кожном покрове, а также в различных типах дермы, которая окутывает внутренние органы.

Третий типаж – десмосома

Данная субстанция представляет собой в своем роде липкую связь, которая образуется над поверхностью клеток. Это может быть небольшая площадка, диаметром не более 0,5 мкм, которая будет обеспечивать максимально эффективную механическую связь между мембранами. Благодаря тому, что десмосомы обладают липкой структурой, они весьма плотно и надежно склеивают между собой клетки. Вследствие этого обменные процессы в них происходят более эффективно и быстро, нежели в условиях простого межклеточного вещества. Такие липкие образования встречаются в межклеточных тканях любого типа, и все они связаны между собой волокнами. Их синхронная и последовательная работа позволяет организму как можно скорее реагировать на любые внешние поражения, а также перерабатывать сложные органические структуры и передавать их в нужные органы.

Клеточный нексус

Такой тип контакта между клетками еще называют щелевым. Суть заключается в том, что тут участие принимают только две клетки, которые плотно прилегают друг к другу, и при этом между ними находится множество белковых канальчиков. Обмен веществ происходит только между конкретными двумя составляющими. Между клетками, которые настолько близко расположены друг к другу, имеется межклеточное пространство, однако в данном случае оно практически бездейственно. Далее по цепной реакции, после обмена веществами между двумя составляющими, витамины и ионы передаются по белковым каналам дальше и дальше. Считается, что этот способ обмена веществ наиболее эффективный, и чем здоровее организм, тем лучше он развивается.

Как работает нервная система

Говоря об обмене веществ, транспорте витаминов и минералов по организму, мы упустили весьма важную систему, без которой не может функционировать ни единое живое существо – нервную. Нейроны, из которых она состоит, по сравнению с другими клетками нашего организма находятся друг от друга на очень большом расстоянии. Именно поэтому данное пространство заполнено межклеточным веществом, которое именуется синапсом. Данный тип соединительной ткани может находиться только между идентичными нервными клетками или же между нейроном и так называемой клеткой-мишенью, в которую должен поступить импульс. Характерной чертой работы синапса является то, что он передает сигнал только от одной клетки к другой, не распространяя его сразу на все нейроны. По такой цепочке информация доходит до своей «мишени» и извещает человека о боли, недомогании и т. д.

Краткое послесловие

Межклеточное вещество в тканях, как оказалось, играет крайне важную роль в развитии, формировании и дальнейшей жизнедеятельности каждого живого организма. Такое вещество составляет большую часть массы нашего тела, оно выполняет самую важную функцию – транспортную, и позволяет всем органам работать слаженно, дополняя друг друга. Межклеточное вещество способно самостоятельно восстанавливаться после различных повреждений, приводить весь организм в тонус и корректировать работу тех или иных поврежденных клеток. Эта субстанция делится на множество различных типов, она встречается как в скелете, так и в крови, и даже в нервных окончаниях живых существ. И во всех случаях она сигнализирует нам о том, что происходит с нами, дает возможность почувствовать боль, если работа определенного органа нарушена, или потребность в получении определенного элемента, когда его не хватает.

Аморфный компонент межклеточного вещества

Аморфный компонент или основное вещество - составляет около 20% массы тела и представляет студнеобразную гидрофильную среду непостоянной плотности и химического состава

В образовании основного вещества основную роль играют фибробласты .

Химический состав : вода, белки, полисахариды, минеральные вещества Полисахариды представлены - гликозаминогликанами, которые бывают 2-х видов:

а) сульфатированные - гепаринсульфат, хондроитин - 4 - сульфат, хондроитин - 6 - сульфат, дерматансульфат .

б) несульфатированные - гиалуроновая кислота .

Количество основного вещества в различных участках соединительной ткани неодинаково. Около капилляров и мелких сосудов. В участках, содержащих жировые прослойки, основного вещества мало, а на границах с тканями другого происхождения, например, с эпителием, его много .

В детском возрасте основного вещества больше ,чем во взрослом и пожилом .

Функции - аморфный компонент межклеточного вещества участвует в метаболизме воды, регуляции ионного состава , в связывании клеток и волокон, адгезии клеток и др.

Физико - химическое состояние межклеточного вещества в значительной мере определяет функциональные особенности соединительной ткани. Чем плотнее межклеточное вещество, тем сильнее выражена механическая и опорная функции. Трофическая функция напротив, лучше обеспечивается полужидким по консистенции межклеточным веществом, благодаря протеогликанам аморфного компонента межклеточного вещества, обладающим гидрофильностью. Под влиянием эндогенного и экзогенного гистамина и гиалуронидазы происходит повышение проницаемости аморфного компонента межклеточного вещества. Повышение концентрации гликозаминогликанов, снижение активности гиалуронидазы, напротив, понижают его проницаемость.

Плотная волокнистая соединительная ткань

Это ткань, для которой характерным является большое количество плотно расположенных волокон и незначительное количество клеточных элементов и основного аморфного вещества между ними .

В зависимости от расположения волокнистых структур эта ткань делится на :

1) плотную неоформленную ;

2) плотную оформленную;

Плотная неоформленная соединительная ткань характеризуется разным направлением волокон и образует сетчатый слой дермы кожи . В его составе толстые пучки коллагеновых волокон идут в разных направлениях , образуя сетку . Это обеспечивает резистентность кожи при самых разнообразных направлениях действия механических факторов. Между пучками коллагеновых волокон расположены фибробласты и макрофаги , сосудисто-нервные сплетения и основное межклеточное вещество.

Плотная оформленная соединительная ткань характеризуется параллельным и строго упорядоченным направлением волокон. Эта ткань входит в состав фиброзных мембран, связок, сухожилий .Последние соединяют мышцы с костями и подвергаются действию векторных сил в одном направлении .

Сухожилие (tendo) - состоит из толстых, плотно лежащих пучков коллагеновых волокон, между которыми располагаются фиброциты и небольшие количества фибробластов и основного аморфного вещества.

Тонкие пластинчатые отростки фиброцитов входят в промежутки между пучками волокон и тесно соприкасаются с ними. Фиброциты часто называют сухожильными клетками (tendinocyti) .

Каждый пучок коллагеновых волокон, отделенный от соседнего слоем фиброцитов называется пучком первого порядка

Несколько пучков первого порядка, окруженных тонкими прослойками рыхлой волокнистой соединительной ткани образуют - пучки второго порядка . Прослойка рыхлой волокнистой соединительной ткани вокруг пучков  порядканосит название - эндотеноний .

Пучки второго порядка образуют пучки третьего порядка , разделенные более толстыми прослойками рыхлой волокнистой соединительной ткани, которая называется - перитеноний . Иногда пучком третьего порядка является само сухожилие . В крупных сухожилиях могут быть и пучки четвертого порядка.

В эндотенонии и перитенонии проходят кровеносные сосуды, питающие сухожилие, нервы, проприоцептивные нервные окончания, посылающие в центральную нервную систему сигналы о состоянии натяжения сухожилий .

Фиброзные мембраны. К этой разновидности плотной соединительной ткани относят фасции, апоневрозы, сухожильные центры, диафрагмы, капсулы некоторых органов, твердую мозговую оболочку, склеру, надхрящницу, надкостницу, белочную оболочку яичника и яичка .Пучки коллагеновых волокон и лежащие между ними фибробласты и фиброциты располагаются в определенном порядке в несколько слоев

В каждом слое волнообразно изогнутые пучки коллагеновых волокон идут параллельно друг другу в одном направлении. Направление волокон одного слоя не совпадает с направлением другого. Отдельные пучки волокон могут переходить из одного слоя в другой, связывая их между собой. Кроме коллагеновых волокон фиброзные мембраны имеют эластические волокна.

Вопрос 2. Межклеточное вещество

Его функции исключительны важны:

  1. Обеспечивает архитектонику и физико-механические свойства ткани.

  2. Создает микроокружение для деятельности клеток.

  3. Объединяет клетки в единую систему, в том числе обеспечивает обмен информацией.

  4. Регулирует функциональную активность клеток (путем контактного взаимодействия и через ростовые факторы).

Межклеточное вещество рвст состоит из волокон и основного аморфного вещества.

Волокна разделяют на 3 основных вида: коллагеновые, ретикулярные и эластические. Они представляют собой нити, собранные из белковых продуктов, секретируемых фибробластами.

Выделение секрета происходит вдоль всей поверхности клетки, что отражается на ее ультраструктуре: развитая грЭПС и кГ разбросаны по всей цитоплазме. На рибосомах грЭПС синтезируются полипептидные цепочки, на краю которых находится особый участок – концевой (регистрационный) пептид. Внутри цистерн ЭПС эти цепи модифицируются, скручиваются по три вместе и образуется растворимая молекула проколлагена. Эти молекулы переносятся транспортными пузырьками в кГ, где гликозилируются и упаковываются в секреторные пузырьки. Пузырьки направляются к плазмолемме для экзоцитоза. На этом завершается внутриклеточный этап и начинается внеклеточный – сборка коллагеновых фибрилл.

Специальные мембранные ферменты в момент экзоцитоза отделяют концевые пептидные кончики от молекул проколлагена. Благодаря этому он переходит в растворимое состояние – тропоколлаген, и уже за пределами клетки молекулы быстро агрегируют в длину, и одновременно связываются поперечными водородными мостиками и гликопротеидами. Так образуются микрофибриллы, а затем коллагеновые фибриллы – длинные нити толщиной от 20 до 120 нм. Они объединяются в более толстые пучки, которые называют коллагеновыми волокнами.

В ходе коллагеногенеза фибробласты ведут строгий контроль за качеством волокон. До 50 % синтезируемого коллагена разрушается еще в клетке, или за ее пределами специальными ферментами (коллагеназа).

Толщина коллагеновых фибрилл и их химический состав, а следовательно, и механические свойства, различаются в разных видах соединительной ткани. Известно около 30 разных типов коллагена. Их обозначают римскими цифрами (от I до XXX). Наибольшее значение имеют первые 5 типов. Коллаген I типа характерен для плотных и рыхлых волокнистых соединительных тканей, костей, зубных тканей, роговицы глаза; II типа – для хрящевых тканей; III тип образует тонкие ретикулярные волокна, которые встречаются в составе различных органов. Коллаген IV типа называют аморфным, он образует не фибриллы, а плоские сети. Входит в состав базальных мембран, как и коллаген V типа. Последние два типа продуцируются не только потомками механоцитов, но и эпителиальными, мышечными и жировыми клетками.

В рвст коллагеновые волокна имеют вид оксифильных извитых тяжей, которые поодиночке идут в разных направлениях. Коллагеновые волокна определяют прочность ткани (чем их больше – тем прочнее), обеспечивают взаимодействие между клетками и межклеточным веществом, влияют на деление, созревание и миграцию окружающих клеток. Нарушения коллагеногенеза (часто генетически обусловленные) являются причиной целого ряда заболеваний. Излишние отложения коллагеновых волокон вызывают фиброзы в различных органах, нарушая их функции. Из этих волокон состоят и келоидные рубцы, возникающие после кожных повреждений.

Кроме коллагена, фибробласты синтезируют также сложный белок – эластин. Объединяясь вместе эти молекулы формируют центральный аморфный компонент волокна. По периферии волокно окружено слоем фибриллярных белков фибриллинов. Эти волокна не образуют пучков, но могут сливаться, формируя эластические мембраны, которые входят, например, в состав сосудистых стенок.

В рвст эластических волокон гораздо меньше, чем коллагеновых. Они определяют эластические свойства тканей, т.е. способность к обратимой деформации при механических нагрузках. Мутации генов, отвечающих за синтез эластических компонентов, являются причиной ряда синдромов. Некоторые из них приводят к гибели больных еще в детском возрасте (синдром Марфана)

Кроме волокон важнейшим компонентом межклеточного вещества является основное аморфное вещество, которое состоит из макромолекулярных комплексов протеогликанов и структурных гликопротеинов, синтезируемых также фибробластами. Кроме этого, в него входят компоненты другого происхождения – белки плазмы крови, минеральные вещества, липиды и т.д. Основное аморфоное вещество удерживает воду и изменяя свое коллоидное состояние регулирует диффузию кислорода, питательных веществ, метаболитов, оно также объединяет клетки с межклеточным веществом.

Протеогликаны образованы осевой пептидной цепочкой, с которой связаны многочисленные молекулы гликозаминогликанов.

Гликозаминогликаны – это неразветвленные полисахаридные молекулы. Для организма человека наиболее характерны: хондроитинсульфат, гепарансульфат, гепарин, кератансульфат и др. К гликозаминогликанам относится также гиалуроновая кислота. Она не связана с белком, т.е. не образует протеогликан, но на ее длинную молекулу как листья, крепятся другие протеогликаны, образуя крупные агрегаты. От набора гликозаминогликанов зависит проницаемость межклеточного вещества и его способность связывать другие молекулы.

Наиболее важные протеогликаны рвст – декорин, синдекан, CD44. Они выполняют разнообразные функции. Взаимодействуют с молекулами коллагена, формируя фибриллы и волокна. Обеспечивают связь между клетками и компонентами межклеточного вещества. Например, синдекан и СD44 пронизывая плазмолемму, соединяют цитоскелет с коллагеновыми волокнами. Участвуют в транспорте электролитов и воды. Связывают, накапливают и выделяют ростовые факторы.

Структурные гликопротеиды представляют собой разветвленную пептидную цепь, с которой связано несколько гексоз. Наиболее изучены фибронектин и ламинин. Фибронектин связывает компоненты межклеточного вещества, участвует в связях коллагеновых волокон с фибробластами, тромбоцитами и другими клетками. Влияет на клеточные свойства (адгезию, подвижность, рост, синтетическую активность). Ламинин входит в состав базальных мембран.

Итак, функции зрелого фибробласта: 1. Продукция и перестройка межклеточного вещества 2. Регуляторные воздействия на другие клетки (через выделение гуморальных факторов, либо опосредованно через межклеточное вещество).

Большинство фибробластов разрушается, а часть превращается в долгоживущую малоактивную клетку – фиброцит. Узкая вытянутая клетка с отростками и темным ядром. Органеллы синтеза утрачиваются, появляются вакуоли и включения гликогена. Они вырабатывают факторы, поддерживающие стабильность межклеточного вещества.

Межклеточное вещество - Medside.ru

Закрыть
  • Болезни
    • Инфекционные и паразитарные болезни
    • Новообразования
    • Болезни крови и кроветворных органов
    • Болезни эндокринной системы
    • Психические расстройства
    • Болезни нервной системы
    • Болезни глаза
    • Болезни уха
    • Болезни системы кровообращения
    • Болезни органов дыхания
    • Болезни органов пищеварения
    • Болезни кожи
    • Болезни костно-мышечной системы
    • Болезни мочеполовой системы
    • Беременность и роды
    • Болезни плода и новорожденного
    • Врожденные аномалии (пороки развития)
    • Травмы и отравления
  • Симптомы
    • Системы кровообращения и дыхания
    • Система пищеварения и брюшная полость
    • Кожа и подкожная клетчатка
    • Нервная и костно-мышечная системы
    • Мочевая система
    • Восприятие и поведение
    • Речь и голос
    • Общие симптомы и признаки
    • Отклонения от нормы
  • Диеты
    • Снижение веса
    • Лечебные
    • Быстрые
    • Для красоты и здоровья
    • Разгрузочные дни
    • От профессионалов
    • Монодиеты
    • Звездные
    • На кашах
    • Овощные
    • Детокс-диеты
    • Фруктовые
    • Модные
    • Для мужчин
    • Набор веса
    • Вегетарианство
    • Национальные
  • Лекарства
    • Антибиотики
    • Антисептики
    • Биологически активные добавки
    • Витамины
    • Гинекологические
    • Гормональные
    • Дерматологические
    • Диабетические
    • Для глаз
    • Для крови
    • Для нервной системы
    • Для печени
    • Для повышения потенции
    • Для полости рта
    • Для похудения
    • Для суставов
    • Для ушей
    • Желудочно-кишечные
    • Кардиологические
    • Контрацептивы
    • Мочегонные
    • Обезболивающие
    • От аллергии
    • От кашля
    • От насморка
    • Повышение иммунитета
    • Противовирусные
    • Противогрибковые
    • Противомикробные
    • Противоопухолевые
    • Противопаразитарные
    • Противопростудные
    • Сердечно-сосудистые
    • Урологические
    • Другие лекарства
    ДЕЙСТВУЮЩИЕ ВЕЩЕСТВА
  • Врачи
  • Клиники
  • Справочник
    • Аллергология
    • Анализы и диагностика
    • Беременность
    • Витамины
    • Вредные привычки
    • Геронтология (Старение)
    • Дерматология
    • Дети
    • Женское здоровье
    • Инфекция
    • Контрацепция
    • Косметология
    • Народная медицина
    • Обзоры заболеваний
    • Обзоры лекарств
    • Ортопедия и травматология
    • Питание
    • Пластическая хирургия
    • Процедуры и операции
    • Психология
    • Роды и послеродовый период
    • Сексология
    • Стоматология
    • Травы и продукты
    • Трихология
    • Другие статьи
  • Словарь терминов
    • [А] Абазия .. Ацидоз
    • [Б] Базофилы .. Богатая тромбоцитами плазма
    • [В] Вазектомия .. Выкидыш
    • [Г] Галлюциногены .. Грязи лечебные
    • [Д] Дарсонвализация .. Дофамин
    • [Ж] Железы .. Жиры
    • [И] Игольный тест .. Искусственная кома
    • [К] Каверна .. Кумарин
    • [Л] Лапароскоп .. Лучевая терапия
    • [М] Магнитотерапия .. Мутация
    • [Н] Наркоз .. Ни

3. Межклеточное вещество соединительной ткани

Оно состоит из двух структурных компонентов:

Основное или аморфное веществосостоит из белков и углеводов. Белки представлены в основном коллагеном, а также альбуминами и глобулинами. Углеводы представлены полимерными формами, в основном гликозоаминогликанами (сульфатированными — хондроитинсерными кислотами, дерматансульфатом, кератинсульфатом, гепаринсульфатом, и несульфатированными — гиалуроновой кислотой). Углеводные компоненты, образуя длинные полимерные цепи, способны удерживать воду в различном количестве. Количество воды зависит от качества углеводного компонента. В зависимости от содержания воды аморфное вещество может быть более или менее плотным (в форме золя или геля), что определяет и функциональную роль данной разновидности соединительной ткани. Аморфное вещество обеспечивается транспорт веществ из соединительной ткани к эпителиальной ткани и обратно, в том числе транспорт веществ из крови к клеткам и обратно. Аморфное вещество образуется прежде всего за счет деятельности фибробластов (коллаген, гликозоаминогликаны), а также за счет веществ плазмы крови (альбумины, глобулины).

Волокнистый компонентмежклеточного вещества представлен коллагеновыми, эластическими и ретикулярными волокнами. В различных органах соотношение названных волокон неодинаково. В рыхлой соединительной волокнистой ткани преобладают коллагеновые волокна.

Коллагеновые (клей—дающие) волокна имеют белый цвет и различную толщину (от 1—3 до 10 и более мкм). Они обладают высокой прочностью и малой растяжимостью, не ветвятся, при помещении в воду набухают, при нахождении в кислотах и щелочах увеличиваются в объеме и укорачиваются на 30 %. Каждое волокно состоит издвух химических компонентов:

  • фибриллярного белка коллагена;

  • углеводного компонента — гликозоаминогликанов и протеогликанов.

Оба эти компонента синтезируются фибробластами и выделяются во внеклеточную среду, где и осуществляется их сборка и построение волокна. В структурной организации коллагенового волокна выделяют пять уровней. Первый(полипептидный) уровень представлен полипептидными цепочками, состоящих из трех аминокислот: пролина, глицина, лизина.Второй(молекулярный) уровень представлен молекулой белка коллагена (длина 280 нм, ширина 1,4 нм), состоящей из трех полипептидных цепочек, закрученных в спираль.Третийуровень — протофибриллы (толщиной до 10 нм), состоящие из нескольких продольно расположенных молекул коллагена, соединенных между собой водородными связями.Четвертый уровень—микрофибриллы (толщиной от 11—12 нм и более), состоящие из 5—6 протофибрилл, связанных боковыми цепями.Пятый уровень — фибрилла или коллагеновое волокно (толщина 1—10 мкм) состоящие из нескольких микрофибрилл (в зависимости от толщины), связанных гликозоаминогликанами и протеогликанами. Коллагеновые волокна имеют поперечную исчерченность, обусловленную как расположением цепей в молекуле коллагена, так и расположением аминокислот в полипептидных цепях. Коллагеновые волокна с помощью углеводных компонентов соединяются в пучки толщиной до 150 нм.

В зависимости от порядка расположения аминокислот в полипептидных цепочках, от степени их гидроксилирования и от качества углеводного компонента различают 12 типов белка коллагена, из которых хорошо изучены пять типов. Эти разновидности белка коллагена входят не только в состав коллагеновых волокон, но и в состав базальных мембран эпителиальных тканей, хрящевых тканей, стекловидного тела и других структур. При развитии некоторых патологических процессов происходит распад коллагена и поступление его в кровь. В плазме крови биохимически определяется тип коллагена, а следовательно определяется и предположительная область распада и его интенсивность.

Эластические волокнахарактеризуются высокой эластичностью, то есть способностью растягиваться и сокращаться, но незначительной прочностью, устойчивы к кислотам и щелочам, при погружении в воду не набухают. Эластические волокна тоньше коллагеновых (1—2 мкм), не имеют поперечной исчерченности, по ходу разветвляются и анастомозируют друг с другом, образуя часто эластическую сеть. Химический составбелок эластин и гликопротеины. Оба компонента синтезируются и выделяются фибробластами, а в стенке сосудов — гладкомышечными клетками. Белок эластин отличается от белка коллагена как составом аминокислот, так и их гидроксилированностью. Структурно эластическое волокно организовано следующим образом: центральная часть волокна представлена аморфным компонентом из молекулэластина, периферическая часть представлена мелкофибриллярной сетью. Соотношение аморфного и фибриллярного компонента в эластических волокнах может быть различным. В большинстве волокон преобладает аморфный компонент. При равенстве аморфного и фибриллярного компонентов волокна называютсяэлауниновыми. Встречаются также эластические волокна —окситалановые,состоящие только из фибриллярного компонента. Локализуются эластические волокна прежде всего в тех органах, которые постоянно изменяют свой объем (в легких, сосудах, аорте, связки и другие).

Ретикулярные волокнапо своему химическому составу близки к коллагеновым, так как они состоят из белка коллагена (3 типа) и углеводного компонента. Ретикулярные волокна тоньше коллагеновых, имеют слабовыраженную поперечную исчерченность. Разветвляясь и анастомозируя, они образуют мелкопетлистые сети, откуда и происходит их название. В ретикулярных волокнах в отличие от коллагеновых, более выражен углеводный компонент, который хорошо выявляется солями азотнокислого серебра и потому эти волокна еще называютсяаргирофильными. Следует помнить однако, что аргирофильными свойствами обладают и незрелые коллагеновые волокна, состоящие из белка проколлагена. По своим физическим свойствам ретикулярные волокна занимают промежуточное положение между коллагеновыми и эластическими волокнами. Образуются они за счет деятельности не фибробластов, а ретикулярных клеток. Локализуется в основном в кроветворных органах, составляя их строму.

Плотная волокнистая соединительная ткань отличается от рыхлой преобладанием в межклеточном веществе волокнистого компонента над аморфным. В зависимости от характера расположения волокон плотная волокнистая соединительная ткань подразделяется наоформленную — волокна располагаются упорядочено, то есть обычно параллельно друг другу, инеоформленную— волокна расположены неупорядочено. Плотная оформленная соединительная ткань представлена в организме в виде сухожилий, связок, фиброзных мембран. Плотная волокнистая соединительная неоформленная ткань образует сетчатый слой дермы кожи. Помимо содержания большого числа волокон, плотная волокнистая соединительная ткань характеризуется бедностью клеточных элементов, которые представлены в основном фиброцитами.

Сухожилие состоит в основном из плотной оформленной соединительной ткани, но содержит также и рыхлую волокнистую соединительную ткань, образующую прослойки. На поперечном срезе сухожилия видно, что оно состоит из параллельно расположенных коллагеновых волокон, образующих пучки 1, 2, 3 и возможно 4 порядков. Пучки 1 порядка, наиболее тонкие, отделены друг от друга фиброцитами. Пучки 2 порядка состоят из нескольких пучков 1 порядка, окруженных по периферии прослойкой рыхлой волокнистой соединительной ткани, составляющейэндотеноний.Пучки 3 порядка состоят из пучков 2 порядка и окружены более выраженными прослойками рыхлой соединительной ткани —перитенонием. Все сухожилие окружено по периферииэпитенонием. В прослойках рыхлой волокнистой соединительной ткани проходят сосуды и нервы, обеспечивающие трофику и иннервацию сухожилия.

У новорожденных и детей в волокнистой соединительной ткани в аморфном веществе содержится много воды, связанной гликозоаминогликанами. Коллагеновые волокна тонкие и состоят не только из белка коллагена, но и проколлагена. Эластические волокна хорошо развиты. Аморфный и волокнистый компонент соединительной ткани в совокупности обуславливает упругость и эластичность кожи у детей. С увеличением возраста в постнатальном онтогенезе содержание гликозоаминогликанов в аморфном веществе уменьшается, а вместе с ними уменьшается и содержание воды. Коллагеновые волокна разрастаются и образуют толстые грубые пучки. Эластические волокна в значительной степени разрушаются, вследствие этого кожа у пожилых и старых людей становится неэластичной и дряблой.

6. Характеристика межклеточного вещества.

Межклеточное вещество – «цемент» или «параплазма». Это продукт синтетической деятельности клеток. В межклеточном веществе различают два главных компонента: основное вещество (гликозаминопротеогликаны и гликопротеины) и погруженные в него волокна (коллагеновые, эластические, ретикулярные). Межклеточное вещество ярко выражено в тканях, выполняющих опорно-механические функции (костная, хрящевая, плотные соединительные ткани).

7. Клетка как главная форма организации протоплазмы.

Клетка – это главная элементарная форма организации живой материи, предел делимости, в которой жизнь проявляется во всей своей полноте.

В организме человека количество клеток варьирует от 10% до 40% в зависимости от возраста. Клетки отличаются по величине, по форме и продолжительности жизни.

8. Величина и форма клеток, факторы их обуславливающие.

Величина клетки определяется ядерно-цитоплазматическими отношениями и отношением площади поверхности к объему цитоплазмы, которые должны быть постоянными. Смещение константы ведет либо к делению клетки, либо к ее гибели. Форма клетки тесно связана с ее функцией.

Клетка состоит из цитоплазмы и ядра. Цитоплазма включает в себя: клеточную поверхность, а также органеллы и включения, погруженные в гиалоплазму.

Клетка – это система компартментов или отсеков (мембранных органелл) с относительно автономными процессами, которые связаны между собой через обмен веществ.

11. Основные функции клетки.

1. Синтетическая функция – с одной стороны эндоплазматический ретикулум синтезирует вещества, которые экспортируются из клетки для нужд всего организма (нейромедиаторы, гормоны, ферменты), с другой - свободные рибосомы и полисомы производят вещества, восполняющие и обновляющие цитоплазму самой клетки. Расстройство этой функции наблюдается при всех болезнях, но главным образом нарушения возникают при повреждении эндокринной системы.

2. Энергетическая функция – любая работа клетки сопровождается затратой энергии. Энергетический аппарат представлен митохондриями (Бенда, 1902). Они лабильны, подвижны, быстро повреждаются и быстро адаптируются. Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ.

3. Регуляторная функция целиком зависит от генома клетки и отвечает за правильный ход метаболических процессов. Нарушение этой функции приводит к генетическим или хромосомным болезням.

12. Синтетический аппарат клетки.

Рибосомы – округлые мелкие, немембранные органеллы, состоящие из двух округлых субъединиц – малой и большой. Каждая субъединица образованы рибосомальной РНК и сложным набором белков. Синтез рРНК и сборка субъединиц происходит в ядрышке, а их объединение – уже в цитоплазме. Рибосомы обеспечивают процесс трансляции белка. Малая субъединица связывается с иРНК, а большая катализирует образование пептидных связей между аминокислотами.

Одиночные рибосомы неактивны и для белкового синтеза они объединяются в цепочки, нанизываясь на молекулу иРНК. Так образуются полисомы. Свободные полисомы синтезируют белки,  которые диффузно распределяются в гиалоплазме.

Синтез мембранных белков, лизосомальных белков и секреторных белков, которые будут выведены за пределы клетки, осуществляют полисомы, прикрепленные к ЭПС.

Синтез таких белков начинается с особого участка – сигнального пептида. Благодаря ему рибосома соединяется с рибофорином – белком, который встроен в мембрану ЭПС. В присоединении участвует еще и специальный мембранный рецептор ЭПС. После присоединения рибосомы рибофорин приобретает форму канала, через который проходит синтезируемая полипептидная цепь. Когда белковая молекула готова, сигнальный участок отсоединяется. 

ЭПС представляет собой сложную систему мембранных полостей. Обычно в форме плоских цистерн, распределенных по всей клетке.

Есть два типа ЭПС – гранулярная и агранулярная. К поверхности грЭПС прикрепляются полисомы.

Итак, главные функции грЭПС: синтез, химическая модификация, накопление и транспортировка белков.

Агранулярная ЭПС является продолжением грЭПС, но лишена я ЭПС является продолжением грЭПС, но лишена рибосом и имеет иной набор белков-ферментов. аЭПС – трубчатыми каналами. У нее множество функций:

Синтез липидов и холестерина, поэтому ее много в клетках, синтезирующих стероидные  гормоны и жиры.

Синтез гликогена (клетки печени)

Детоксикация вредных веществ (лекарственные препараты, алкоголь, токсины)

Накопление Са2+, необходимого для сокращения мышечных клеток.

От ЭПС отшнуровываются транспортные пузырьки, содержащие синтезированные вещества, перемещаются в сторону комплекса Гольджи и сливаются с ним.

Комплекс Гольджи – мембранная органелла, представленная диктиосомами (стопка из 3-10 плоских цистерн). Диктиосома имеет незрелую поверхность, обращенную к ЭПС (цис-) и зрелую, обращенную к плазмолемме (транс-).  С цис-поверхностью сливаются транспортные мембранные пузырьки, содержащие продукты синтеза,  которые отшнуровываются от ЭПС. Вещества, попавшие в полости кГ, направляются в различные части диктиосомы, где подвергаются процессингу. Это химические превращения молекул – к ним могут присоединяются сахара, сульфатные и фосфатные группы, белковые молекулы могут частично расщепляться и т.д.

От боковых участков кГ отшнуровываются гидролазные пузырьки, заполненные гидролитическими ферментами. Из них формируются лизосомы.

Функции кГ:

Синтез полисахаридов и гликопротеинов (слизь, гликокаликс).

Процессинг молекул

Накопление продуктов синтеза, их упаковка и транспортировка.

Формирование лизосом.

30.Межклеточное вещество рыхлой соединительной ткани

30.1.Функциональное значение

Функции межклеточного вещества рыхлой волокнистой соединительной ткани:

  • беспечение архитектоники, физико-химических и механических свойств ткани;

  • участие в создании оптимального микроокружения для деятельности клеток;

  • объединение в единую систему всех клеток соединительной ткани и обеспечение передачи информации между ними;

  • воздействие на многочисленные функции различных клеток (пролиферацию, дифференцировку, подвижность, экспрессию рецепторов, синтетическую и секреторную активность, чувствительность к действию различных стимулирующих, ингибирующих и повреждающих факторов и т д.). Этот эффект может осуществляться путем контактного воздействия компонентов межклеточного вещества на клетки, а также благодаря его способности накапливать и выделять факторы роста.

30.2.Состав матрикса

Межклеточное вещество рыхлой волокнистой соединительной ткани состоит из волокон и основного аморфного вещества. Оно является продуктом деятельности клеток этой ткани, в первую очередь, фибробластов.

30.3.Виды волокон. Их морфологическая характеристика

30.4.Физические свойства волокон

Коллагеновые волокна образованы белками коллагенами, которые получили свое название из-за способности содержащих их тканей при длительном вываривании давать животный клей.

Коллагеновые волокна толщиной 120 мкм образуются путем объединения в пучки коллагеновых фибрилл (см. рис. 106). В рыхлой волокнистой соединительной ткани коллагеновые волокна (собственно коллагеновые волокна) образованы преимущественно коллагеном I типа. На препаратах они имеют вид оксифильных продольно исчерченных извитых тяжей, идущих в различных направлениях поодиночке и часто образующих пучки вариабельной (до 150 мкм) толщины. При изучении в поляризационном микроскопе обнаруживается, что коллагеновые волокна обладают свойством двойного лучепреломления, что указывает на наличие продольно расположенных субмикроскопических единиц. При исследовании под электронным микроскопом выявляются образующие их параллельно лежащие фибриллы диаметром 20-120 нм с поперечной исчерченностью (период 64-68 нм). Функции коллагеновых волокон:

  • обеспечение высоких механических свойств соединительной ткани. Чем выше содержание коллагеновых волокон в данной ткани, тем большей прочностью она обладает. Эти волокна практически нерастяжимы; при увеличении нагрузки они лишь слегка распрямляются, утрачивая волнообразный ход и более не удлиняясь вплоть до достижения предела прочности, превышение которого вызывает их разрыв;

  • определение (в значительной мере) архитектоники соединительной ткани;

  • обеспечение взаимодействий между клетками и межклеточным веществом, а также связь между отдельными компонентами межклеточного вещества;

  • влияние на пролиферацию, дифференцировку, миграцию и функциональную активность различных клеток.

Ретикулярные волокна имеют малый диаметр (0.1-2 мкм) и, как правило, формируют тонкие растяжимые трехмерные сети, что определило их название (от лат. reticulum сеточка). Они образованы коллагеном III типа, т.е. по своей химической природе также являются коллагеновыми. Эти волокна не обнаруживаются па препаратах, окрашенных гематоксилином и эозином. Их выявление основано на способности давать ШИК-реакцию и окрашиваться солями серебра, отчего их называют также аргирофильными (от греч. argyros серебро и philia любовь). Каждое ретикулярное волокно образовано пучком микрофибрилл толщиной 20-40 нм, обладающих поперечной исчерченностью с периодичностью 64-68 нм и заключенных в оболочку из гликопротеинов и протеогликанов, которая и обусловливают аргирофилию и ШИК-реакцию этих волокон.

Эластические волокна в соединительной ткани обычно содержатся в значительно меньшем количестве, чем коллагеновые, за исключением участков, обладающих подвижностью. На светооптическом уровне они выявляются при использовании избирательных методов окраски (чаще всего - орсеина). Эластические волокна варьируют по толщине в пределах 0.2-10 мкм, ветвятся и анастомозируют друг с другом, формируя трехмерные сети; в отличие от коллагеновых волокон, они обычно не образуют пучки. Функции эластических волокон:

  • определение архитектоники ткани;

  • обеспечение способности ткани к обратимой деформации (к возвращению к исходной форме после ее временного изменения.

53. Два вида костной ткани, клетки и межклеточное вещество, функции.

Костные ткани - специализированный вид соединительной ткани с высокой минерализацией межклеточного вещества (70% неорганических соединений, в основном фосфатов кальция и более 30 микроэлементов -медь, стронций, цинк, барий, магний и др.). Органическое вещество -матрикс костной ткани - белки коллагенового типа, липиды, немного воды, хондроитинсерной кислоты, лимонной и др. кислот, образующих комплексы с кальцием.

Классификация. Существует два типа костной ткани: ретикулофиброзная(грубоволокнистая) встречается главным образом у зародышей. У взрослых в местах прикрепления сухожилий к костям. Беспорядочно расположенные коллагеновые волокна образуют в ней толстые пучки. В основном веществе находятся костные полости или лакуны, с длинными канальцами, в которых лежат остеоциты. С поверхности-надкостница.Пластинчатаясостоит из костных пластинок, содержат фибробласты, которые могут продолжаться в соседние, создавая единую волокнистую основу. Из этой ткани построены компактное и губчатое вещество в большинстве плоских и трубчатых костей. К костной ткани относят дентин и цемент зуба.

Клетки костной ткани:остеобласты–клетки-строители, молодые, способные к пролиферации, создающие костную ткань. Форма: кубическая, пирамидальная или угловая. Располагаются в глубоком слое надкостницы по ходу кровеносных сосудов. Ядро округлой формы, эксцентрично расположено. В цитоплазме развита гранулярная ЭПС, митохондрии, аппарат Гольджи, много РНК и высокая активность щелочной фосфатазы. Органеллы в центре, а периферия содержит пучки из актиновых микрофиламентов. В активном состоянии вырабатывают матричные пузыри с кальцием, фактор миграции макрофагов. Переходя в фазу покоя переходят в остеоциты.Остеоциты- преобладающие по количеству дефинитивные клетки, утратившие способность к делению. Они отросчатой формы, имеют компактное крупное ядро, слабобазофильную цитоплазму. Органеллы слабо развиты. Остеоциты лежат в костных полостях или лакунах, повторяющих контуры остеоцита. Длина полостей от 22 до 55 мкм, ширина от 6 до 14 мкм. Канальцы заполнены тканевой жидкостью, анастомозируют между собой и периваскулярным пространством, осуществляя обмен веществ.Остеокласты- клетки гематогенной природы, способные разрушать обызвествленный хрящ и кость (см вопрос 55).

Межклеточное веществосостоит из основного аморфного компонента и коллагеновых волокон, образующих небольшие пучки. Они содержат коллаген I и V типов. Волокна имеют беспорядочное расположение (ретикулофиброзная ткань) или строго ориентированное (пластинчатое) расположение. В основном аморфном веществе имеется небольшое количество хондроитинсерной кислоты, лимонной, обнаруживаются неколлагеновые белки - остеокальцин, остеонектин и различные фосфопротеины и протеолипиды, принимающие участие в минерализации кости, а также гликозаминопротеогликаны. Основное вещество содержиткристаллы гидроксиапатита, упорядочено расположенные по отношению к коллагеновым фибриллам, и аморфный фосфат кальция. Неорганические вещества-преобладает кальций и фосфор. Органические вещества обеспечивают эластичность костной ткани, неорганические плотность.

24.Рыхлая соединительная ткань

24.1Локализация в организме

Локализация: стенки многих органов, адвентиция сосудов, собственная пластинка слизистых оболочек, подслизистая основа, между мышечными слоями.

24.2.Клеточные элементы, источники их формирования

Особенности: много клеток, мало межклеточного вещества (волокон и аморфного вещества), волокна не упорядочены

24.3.Состав межклеточного вещества

  • Коллагеновые волокна

  • Эластические волокна – снаружи микрофибриллы, а внутри – белок эластин.

  • Ретикулярные волокна – разновидность коллагеновых волокон. Хорошо окрашиваются солями серебра – отсюда термин «аргирофильные» волокна.

  • Основное (аморфное) вещество:

Гликозамингликаны (ГАГ) (несульфатированные и сульфатированные) – гиалуроновая кислота.

Протеогликаны (ГАГ + белок) – хондроитин-4-сульфат, хондроитин-6-сульфат, дерматан-сульфат, гепаран-сульфат, гепарин.

Гликопротеины – фибронектин, ламинин др.

Консистенция аморфного вещества – желеобразная.

24.4.Источники развития и регенерации клеток волокнистой соединительной ткани

Общий источник развития – мезенхима. Источники образования мезенхимы:

  • Различные участки мезодермы : Дерматом , Склеротом ,Висцеральный листок спланхнотома

  • Нейромезенхима (эктомезенхима) - Нервный гребень (Ганглиозная пластинка)

РВСТ хорошо регенерирует и участвует при восполнении целостности любого поврежденного органа. При значительных повреждениях часто дефект органа восполняется соединительнотканным рубцом. Регенерация РВСТ происходит за счет стволовых клеток фибробластического дифферона и малодифференцированных клеток (адвентициальные клетки, например) способных дифференцироваться в фибробласты. Фибробласты размножаются и начинают вырабатывать органические компоненты межклеточного вещества.

24.5.Функции рыхлой соединительной ткани

  • Трофическая функция: располагаясь вокруг сосудов, РВСТ регулирует обмен веществ между кровью и тканями органа.

  • Защитная функция обусловлена наличием в РВСТ макрофагов, плазмоцитов и лейкоцитов. Антигены прорвавшиеся через первый - эпителиальный барьер организма , встречаются со II барьером - клетками неспецифической (макрофаги, нейтрофильные гранулоциты) и иммунологической защиты (лимфоциты, макрофаги, эозинофилы).

  • Опорно-механическая функция.

  • Пластическая функция - участвует в регенерации органов после повреждений.

25.Плотная соединительная ткань

25.1.Классификация

  • Ориентированная, или оформленная, ткань (сухожилия, связки, апоневрозы)

  • Неориентированная, или неоформленная, ткань (сетчатый слой дермы и др.)

Особенности: мало клеток, много волокон и волокна не упорядочены.

Плотная волокнистая соединительная ткань образована теми же компонентами, что и рыхлая волокнистая соединительная ткань, отличаясь от нее

  • очень высоким содержанием волокон (преимущественно коллагеновых), формирующих толстые пучки и занимающих основную часть объема ткани,

  • малым количеством основного аморфного вещества в составе межклеточного вещества

  • сравнительно низким содержанием клеточных элементов

  • преобладанием одного (главного) типа клеток - фиброцитов - над остальными (особенно в плотной оформленной ткани).

25.2.Локализация в организме

Локализация: сетчатый слой кожи, надкостница, надхрящница. А также сухожилия, связки, капсулы, фасциях, фиброзных мембранах.

25.3.Особенности межклеточного вещества

  • Коллагеновые и эластические волокна

  • Основное вещество – ГАГ и протеогликаны в небольшом количестве.

Плотная волокнистая неоформленная соединительная ткань характеризуется неупорядоченным расположением пучков коллагеновых волокон в трех различных плоскостях, которые переплетаются между собою, формируя трехмерную сеть (рис. 10-10). Последняя

Плотная волокнистая оформленная соединительная ткань содержит толстые пучки коллагеновых волокон, располагающейся параллельно друг другу (в направлении действия нагрузки), которые связаны небольшим количеством основного аморфного вещества.

Классификация

Различают три вида хрящевой ткани:

Такое подразделение хрящевых тканей основано на структурно-функциональных особенностях строения их межклеточного вещества, степени содержания и соотношения коллагеновых и эластических волокон.

Краткая характеристика клеток хрящевой ткани

Хондробласты – небольшие уплощенные клетки, способные делиться и синтезировать межклеточное вещество. Выделяя компоненты межклеточного вещества, ходробласты как бы «замуровывают» себя в нем, - превращаются в хондроциты. Происходящий при этом рост хряща называется периферическим, или аппозиционным, - т.е. путем «наложения» новых слоев хряща.

Хондроциты - имеют больший размер и овальную форму. Они лежат в особых полостях межклеточного вещества – лакунах. Хондроциты часто образуют т.н. изогенные группы из 2-6 клеток, которые произошли из одной клетки. При этом некоторые хондроциты сохраняют способность к делению, а другие активно синтезируют компоненты межклеточного вещества. За счёт деятельности хондроцитов происходит увеличение массы хряща изнутри - интерстициальный рост.

Краткая характеристика межклеточного вещества хрящевой ткани

Межклеточное вещество состоит из волокон и основного, или аморфного, вещества. Большинство волокон представлено коллагеновыми волокнами, а в эластических хрящах – еще и эластическими волокнами. Основное вещество содержит воду, органические вещества и минеральные вещества.

Органический компонент представлен протеогликановыми агрегатами (ПГА) и гликопротеинами (ГП). В основе протеогликанового агрегата лежит длинная нить гиалуроновой кислоты. С помощью небольших глобулярных белков с гиалуроновой кислотой связаны линейные фибриллярные пептидные цепи т.н. корового белка (core protein). В свою очередь, от коровых белков отходят олигосахаридные ветви –гликозаминогликаны (ГАГ). Соединения гликозаминогликанов с коровыми белками имеют собственное название – протеогликаны (ПГ).

Протеогликановые агрегаты обладают высокой гидрофильностью, т.е. связывают большое количество воды и обеспечивают тем самым высокую упругость хряща. При этом они сохраняют проницаемость для низкомолекулярных метаболитов.

Хрящевой дифферон и хондрогистогенез

Развитие хрящевой ткани осуществляется как у эмбриона, так и в постэмбриональном периоде при регенерации. В процессе развития хрящевой ткани из мезенхимы образуется хрящевой дифферон:

  • стволовые клетки,

  • полустволовые (прехондробласты),

  • хондробласты (хондробластоциты),

  • хондроциты.

Хондробласты (от греч. chondros — хрящ, blastos — зачаток) — это молодые уплощенные клетки, способные к пролиферации и синтезу межклеточного вещества хряща (протеогликанов). Они являются разновидностями фибробластов, потомками стволовых и полустволовых клеток. Цитоплазма хондробластов имеет хорошо развитую гранулярную и агранулярную эндоплазматическую сеть, аппарат Гольджи. При окрашивании цитоплазма хондробластов оказывается базофильной в связи с богатым содержанием РНК. При участии хондробластов происходит периферический (аппозиционный) рост хряща. Эти клетки в процесссе развития хряща превращаются в хондроциты.

Хондроциты — основной вид клеток хрящевой ткани. Они бывают овальными, округлыми или полигональной формы — в зависимости от степени дифференцировки. Расположены хондроциты в особых полостях (лакунах) в межклеточном веществе поодиночке или группами. Группы клеток, лежащие в общей полости, называютсяизогенными (от греч. isos — равный, genesis — развитие).

Источником развития хрящевых тканей является мезенхима. В первой стадии клетки мезенхимы теряют свои отростки, плотно прилегают друг к другу, формируют хондрогенные островки. Находящиеся в их составе стволовые клетки дифференцируются в хондробласты (хондробластоциты) — клетки, подобные фибробластам. Эти клетки являются главным строительным материалом хрящевой ткани. В их цитоплазме сначала увеличивается количество свободных рибосом, затем появляются участки гранулярной эндоплазматической сети.

В следующей стадии образуется первичная хрящевая ткань. Клетки центрального участка хондрогенного островка (первичные хондроциты) округляются, увеличиваются в размере, в них начинается синтез и секреция фибриллярных белков (коллагена). Образующееся таким образом межклеточное вещество отличается оксифилией.

В стадии дифференцировки хрящевой ткани хондроциты приобретают способность синтезировать гликозаминогликаны, связанные с неколлагеновыми белками (протеогликаны).

По периферии хрящевой закладки, на границе с мезенхимой, формируетсянадхрящница — оболочка, покрывающая развивающийся хрящ снаружи. Во внутренней зоне надхрящницы клетки интенсивно делятся, дифференцируются в хондробласты. В процессе секреции и наслаивания на уже имеющийся хрящ сами клетки «замуровываются» в продукты своей деятельности. Так происходит рост хряща способом наложения, или его аппозиционный (периферический) рост.

По мере роста и развития хряща его центральные участки все более отдаляются от близлежащих сосудов и начинают испытывать затруднения в питании, осуществляемом диффузно со стороны сосудов надхрящницы. Вследствие этого хондроциты теряют способность размножаться, некоторые из них подвергаются разрушению, а протеогликаны превращаются в более простой оксифильный белок — альбумоид.

Гиалиновая хрящевая ткань

Гиалиновая хрящевая ткань (textus cartilaginous hyalinus), называемая еще стекловидной (от греч. hyalos — стекло) — в связи с ее прозрачностью и голубовато-белым цветом, является наиболее распространенной разновидностью хрящевой ткани. Во взрослом организме гиалиновая ткань встречается на суставных поверхностях костей, в местах соединения ребер с грудиной, в гортани и воздухоносных путях.

Большая часть встречающейся в организме у человека гиалиновой хрящевой ткани покрыта надхрящницей (perichondrium) и представляет собой вместе с пластинкой хрящевой ткани анатомические образования — хрящи.

В надхрящнице выделяют два слоя: наружный, состоящий из волокнистой соединительной ткани с кровеносными сосудами; и внутренний, преимущественно клеточный, содержащий хондробласты и их предшественники — прехондробласты. Под надхрящницей в поверхностном слое хряща располагаются молодые хондроциты веретенообразной уплощенной формы. В более глубоких слоях хрящевые клетки приобретают овальную или округлую форму. В связи с тем что синтетические и секреторные процессы у этих клеток ослабляются, они после деления далеко не расходятся, а лежат компактно, образуя изогенные группы от 2 до 4 (реже до 6) хондроцитов.

В структурной организации межклеточного вещества хряща большую роль играет хондронектин. Этот гликопротеин соединяет клетки между собой и с различными субстратами (коллагеном, гликозаминогликанами).

Структурной особенностью гиалинового хряща суставной поверхности является отсутствие надхрящницы на поверхности, обращенной в полость сустава. Суставной хрящ состоит из трех нечетко очерченных зон: поверхностной, промежуточной и базальной.

В поверхностной зоне суставного хряща располагаются мелкие уплощенные малоспециализированные хондроциты, напоминающие по строению фиброциты.

В промежуточной зоне клетки более крупные, округлой формы, метаболически активные.

Глубокая (базальная) зона делится базофильной линией на некальцинирующийся и кальцинирующийся слои. В последний из подлежащей субхондральной кости проникают кровеносные сосуды и могут происходить процессы обызвествления хряща.

Питание суставного хряща лишь частично осуществляется из сосудов глубокой зоны, а в основном происходит за счет диффузии из синовиальной жидкости полости сустава.

Эластическая хрящевая ткань

Второй вид хрящевой ткани - эластическая хрящевая ткань (textus cartilagineus elasticus) встречается в тех органах, где хрящевая основа подвергается изгибам (в ушной раковине, рожковидных и клиновидных хрящах гортани и др.). В свежем, нефиксированном состоянии эластическая хрящевая ткань бывает желтоватого цвета и не такая прозрачная, как гиалиновая. По общему плану строения эластический хрящ сходен с гиалиновым. Снаружи он покрыт надхрящницей. Хрящевые клетки (молодые и специализированные хондроциты) располагаются в лакунах поодиночке или образуют изогенные группы.

Одним из главных отличительных признаков эластического хряща является наличие эластических волкон в его межклеточном веществе, наряду с коллагеновыми волокнами. Эластические волокна пронизывают межклеточное вещество во всех направлениях.

В слоях, прилежащих к надхрящнице, эластические волокна без перерыва переходят в эластические волокна надхрящницы. Липидов, гликогена и хондроитинсульфатов в эластическом хряще меньше, чем в гиалиновом.

Волокнистая хрящевая ткань

Третий вид хрящевой ткани - волокнистая, или фиброзная, хрящевая ткань (textus cartilaginous fibrosa) находится в межпозвоночных дисках, полуподвижных сочленениях, в местах перехода плотной волокнистой соединительной ткани сухожилий и связок в гиалиновый хрящ, где ограниченные движения сопровождаются сильными натяжениями. Межклеточное вещество содержит параллельно направленные коллагеновые пучки, постепенно разрыхляющиеся и переходящие в гиалиновый хрящ. В хряще имеются полости, в которые заключены хрящевые клетки. Хондроциты располагаются поодиночке или образуют небольшие изогенные группы. Цитоплазма клеток часто бывает вакуолизированной. По направлению от гиалинового хряща к сухожилию волокнистый хрящ становится все более похожим на сухожилие. На границе хряща и сухожилия между коллагеновыми пучками лежат столбиками сдавленные хрящевые клетки, которые без какой-либо границы переходят в сухожильные клетки, расположенные в плотной оформленной волокнистой соединительной ткани сухожилия.

53

Два вида костной ткани, клетки и межклеточное вещество, функции.

Костные ткани (textus ossei) — это специализированный тип соединительной ткани свысокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.

Органическое вещество — матрикс костной ткани — представлено в основном белками коллагенового типа и липидами. По сравнению с хрящевой тканью в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости.

Таким образом, твердое межклеточное вещество костной ткани (в сравнении с хрящевой тканью) придает костям более высокую прочность, и в тоже время – хрупкость. Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства костной ткани — способность сопротивляться растяжению и сжатию.

Несмотря на высокую степень минерализации, в костных тканях происходят постоянное обновление входящих в их состав веществ, постоянное разрушение и созидание, адаптивные перестройки к изменяющимся условиям функционирования. Морфофункциональные свойства костной ткани меняются в зависимости от возраста, физических нагрузок, условий питания, а также под влиянием деятельности желез внутренней секреции, иннервации и других факторов.

2.Оформленные соединительные ткани. Морфо-функциональная характеристика. Клеточные элементы и межклеточное вещество. Классификация.

Плотная волокнистая оформленная соединительная ткань – содержит толстые пучки коллагеновых волокон, расположенных параллельно друг другу (в направлении действия нагрузки). Волокна связаны небольшим количеством основного аморфного вещества. Содержание клеток невелико, преобладают фиброциты.

Образует сухожилия, связки, фасции и апоневрозы.

Сухожильные пучки.

В организации коллагеновых волокон различают 4 структурных уровня. В свою очередь, волокна объединяются в пучки, что даёт в сухожилии ещё три более высоких структурных уровня.

Так, пучки первого порядка разделены лишь фиброцитами, или сухожильными клетками (тендиноцитами), отчего плотно прилегают друг к другу. При этом они – оксифильные (как обычно) и достаточно толстые.

Эти пучки объединяются в пучки второго порядка, которые разделены эндотенонием – тонкими прослойками рыхлой волокнистой соединительной ткани.

Следующий уровень организации – пучки третьего порядка, окружённые перитенонием – более толстым слоем рыхлой волокнистой соединительной ткани. Пучки третьего порядка могут представлять собой сухожилие в целом.

ПЛОТНАЯ ВОЛОКНИСТАЯ ОФОРМЛЕННАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ

● упорядоченное расположение пучков коллагеновых волокон

● аморфного вещества мало

● клеток мало

3.Понятие о клетке в биологии. Клеточная теория, ее основные положения и значение для биологии и медицины.

Клеточная теория – это обобщенное представление о строении клеток, как единиц живого, об их воспроизведении и роли в формировании многоклеточных организмов.

Основные положения клеточной теории (Т. Шванн, 1838, Р. Вирхов, 1858):

1. Клетка – наименьшая единица живого

2. Клетки сходны по общему плану строения

3. Клетки размножаются путем деления (каждая клетка из клетки)

4. В организме клетки функционируют не изолированно, а находятся в тесной связи друг с другом, образуя единое целое (ткани, органы, системы органов).

Билет №13.

1.Червеобразный отросток. Морфо-функциональная характеристика. Источники развития. Регенерация.

Для этого органа характерны большие скопления лимфоидной ткани. Червеобразный отросток имеет просвет треугольной формы у детей и круглой формы — у взрослых. С годами этот просвет может облитерироваться, зарастая соединительной тканью.

Развитие. В развитии аппендикса плода человека можно выделить два основных периода. Первый период (8—12 нед) характеризуется отсутствием лимфоидных узелков, формированием однослойного призматического эпителия на поверхности и в криптах, появлением эндокриноцитов и началом заселения лимфоцитами собственной пластинки слизистой оболочки. Для второго периода (17—31-я неделя развития) характерны интенсивное развитие лимфоидной ткани и лимфатических узелков без светлых центров, образование куполов под эпителием, расположенных над узелками. Эпителий, покрывающий купол, однослойный кубический, иногда плоский, инфильтрирован лимфоцитами. Вокруг зоны купола расположены высокие складки слизистой оболочки. На дне крипт дифференцируются экзокриноциты с ацидофильными гранулами. В процессе развития аппендикс заселяется как Т-лимфоцитами, так и В-лимфоцитами. Завершение основных морфогенетических процессов отмечается к 40-й неделе развития, когда число лимфатических узелков в органе достигает 70, количество эндокриноцитов максимально (среди них преобладают ЕС- и S-клетки).

Слизистая оболочка червеобразного отростка имеет кишечные железы (крипты), покрытые однослойным призматическим эпителием со сравнительно небольшим содержанием бокаловидных клеток. На дне кишечных крипт чаще, чем в других отделах толстой кишки, встречаются клетки Панета (экзокриноциты с ацидофильными гранулами). Здесь же располагаются недифференцированные эпителиоциты и эндокринные клетки, причем их здесь больше, чем в криптах тонкой кишки (в среднем в каждой около 5 клеток).

Собственная пластинка слизистой оболочки без резкой границы (вследствие слабого развития мышечной пластинки слизистой) переходит в подслизистую основу. В собственной пластинке и в подслизистой основе располагаются многочисленные крупные местами сливающиеся скопления лимфоидной ткани. При попадании инфекции в просвет отростка всегда наступают выраженные изменения его стенки. В лимфоидных узелках возникают крупные светлые центры, лимфоциты сильно инфильтрируют соединительную ткань собственной пластинки, и часть их проходит через эпителий в просвет червеобразного отростка. В этих случаях в просвете отростка часто можно видеть отторгнутые эпителиоциты и скопления погибших лимфоцитов. В подслизистой основе располагаются кровеносные сосуды и нервное подслизистое сплетение.

Мышечная оболочка имеет два слоя: внутренний — циркулярный и наружный — продольный. Продольный мышечный слой отростка сплошной в отличие от соответствующего слоя ободочной кишки. Снаружи отросток обычно покрыт серозной оболочкой, которая образует собственную брыжейку отростка.

Червеобразный отросток осуществляет защитную функцию, скопления лимфоидной ткани в нем входят в состав периферических отделов иммунной системы.


Смотрите также

От вздутия живота народные средства

От Вздутия Живота Народные Средства

Народные средства от вздутия живота Вздутие живота или метеоризм характеризуется излишним скоплением газов в кишечнике, которое может вызывать болезненные… Подробнее...
Заболевания вызывающие тошноту, диарею и повышенную температуру тела

Температура Понос Тошнота

Заболевания вызывающие тошноту, диарею и повышенную температуру тела Каждый хоть однажды сталкивался с такими неприятными симптомами, как температура, понос,… Подробнее...
Почему у ребенка зеленый понос

Понос Зеленый У Ребенка

Почему у ребенка зеленый понос Появление у ребенка зеленого поноса часто вводит в панику его родителей. Не зная причину появления поноса зеленого цвета, в… Подробнее...
Какие болезни сопровождаются поносом и рвотой

Температура Понос Рвота У Ребенка

Какие болезни сопровождаются поносом и рвотой У маленького ребенка еще только формируется защитная система организма, и… Подробнее...
Лекарство от вздутия живота

Лекарство От Вздутия Живота

Чем снять вздутие живота Вздутие живота, как его называют врачи, метеоризм, — неприятная, а главное, исключительно… Подробнее...
Причины поноса после еды

После Еды Сразу Иду В Туалет По Большому - Понос

Причины поноса после еды Некоторый жалуются, что после еды сразу идут в туалет по-большому из-за поноса. Такая… Подробнее...
Понос после арбуза

Понос После Арбуза

Какие продукты могут вызвать понос Расстройство пищеварения может возникнуть не только как реакция на отравление, но и… Подробнее...
Первая помощь ребенку при рвоте

Рвота У Ребенка Без Температуры И Поноса Что Делать - 3 Года

Первая помощь ребенку при рвоте Дети до 5 лет являются самой восприимчивой к различным вирусам и бактериям группой.… Подробнее...