Молярная концентрация соляной кислоты


Соляная кислота — Википедия

Соля́ная кислота́ (также хлороводоро́дная, хлористоводоро́дная кислота) — раствор хлороводорода (HCl{\displaystyle {\ce {HCl}}}) в воде, сильная одноосновная кислота. Бесцветная, прозрачная, едкая жидкость, «дымящаяся» на воздухе (техническая соляная кислота — желтоватого цвета из-за примесей железа, хлора и пр.). В концентрации около 0,5 % присутствует в желудке человека. Соли соляной кислоты называются хлоридами.

Впервые хлороводород получил алхимик Василий Валентин, нагрев гептагидрат сульфата железа с поваренной солью и назвав полученное вещество «духом соли» (лат. spiritus salis). Иоганн Глаубер в XVII в. получил соляную кислоту из поваренной соли и серной кислоты. В 1790 году британский химик Гемфри Дэви получил хлороводород из водорода и хлора, таким образом установив его состав. Возникновение промышленного производства соляной кислоты связано с технологией получения карбоната натрия: на первой стадии этого процесса поваренную соль вводили в реакцию с серной кислотой, в результате чего выделялся хлороводород. В 1863 году в Англии был принят закон «Alkali Act», согласно которому запрещалось выбрасывать этот хлороводород в воздух, а необходимо было пропускать его в воду. Это привело к развитию промышленного производства соляной кислоты. Дальнейшее развитие произошло благодаря промышленным методам получения гидроксида натрия и хлора путём электролиза растворов хлорида натрия [1].

Физические свойства соляной кислоты сильно зависят от концентрации растворённого хлороводорода:

Конц. (вес), мас. % Конц. (г/л),
кг HCl/м³
Плотность,
кг/л
Молярность,
M
Водородный
показатель (pH)

Вязкость,
мПа·с
Удельная
теплоемкость
,
кДж/(кг·К)
Давление
пара
,
Па
Т. кип.,
°C
Т. пл.,
°C
10 % 104,80 1,048 2,87 −0,4578 1,16 3,47 0,527 103 −18
20 % 219,60 1,098 6,02 −0,7796 1,37 2,99 27,3 108 −59
30 % 344,70 1,149 9,45 −0,9754 1,70 2,60 1,410 90 −52
32 % 370,88 1,159 10,17 −1,0073 1,80 2,55 3,130 84 −43
34 % 397,46 1,169 10,90 −1,0374 1,90 2,50 6,733 71 −36
36 % 424,44 1,179 11,64 −1,06595 1,99 2,46 14,100 61 −30
38 % 451,82 1,189 12,39 −1,0931 2,10 2,43 28,000 48 −26

При 20 °C, 1 атм (101 кПа)

При низкой температуре хлороводород с водой даёт кристаллогидраты составов HCl⋅h3O{\displaystyle {\ce {HCl.h3O}}} (т. пл. −15,4 °С), HCl⋅2h3O{\displaystyle {\ce {HCl.2h3O}}} (т. пл. −18 °С), HCl⋅3h3O{\displaystyle {\ce {HCl.3h3O}}} (т. пл. –25 °С), HCl⋅6h3O{\displaystyle {\ce {HCl.6h3O}}} (т. пл. −70 °С). При атмосферном давлении (101,3 кПа) хлороводород с водой образуют азеотропную смесь с т. кип. 108,6 °С и содержанием HCl{\displaystyle {\ce {HCl}}} 20,4 мас. %[2].

2Na+2HCl⟶2NaCl+h3↑{\displaystyle {\ce {2Na + 2HCl -> 2NaCl + h3 ^}}},
Mg+2HCl⟶MgCl2+h3↑{\displaystyle {\ce {Mg + 2HCl -> MgCl2 + h3 ^}}},
2Al+6HCl⟶2AlCl3+3h3↑{\displaystyle {\ce {2Al + 6HCl -> 2AlCl3 + 3h3 ^}}}.
Na2O+2HCl⟶2NaCl+h3O{\displaystyle {\ce {Na2O + 2HCl -> 2NaCl + h3O}}},
MgO+2HCl⟶MgCl2+h3O{\displaystyle {\ce {MgO + 2HCl -> MgCl2 + h3O}}},
Al2O3+6HCl⟶2AlCl3+3h3O{\displaystyle {\ce {Al2O3 + 6HCl -> 2AlCl3 + 3H_2O}}}.
NaOH+HCl⟶NaCl+h3O{\displaystyle {\ce {NaOH + HCl -> NaCl + h3O}}},
Ba(OH)2+2HCl⟶BaCl2+2h3O{\displaystyle {\ce {Ba(OH)2 + 2HCl -> BaCl2 + 2H_2O}}},
Al(OH)3+3HCl⟶AlCl3+3h3O{\displaystyle {\ce {Al(OH)3 + 3HCl -> AlCl3 + 3H_2O}}}.
Na2CO3+2HCl⟶2NaCl+h3O+CO2↑{\displaystyle {\ce {Na2CO3 + 2HCl -> 2NaCl + h3O + CO2 ^}}}.
2KMnO4+16HCl⟶5Cl2↑+2MnCl2+2KCl+8h3O{\displaystyle {\ce {2KMnO4 + 16HCl -> 5Cl_2 ^ + 2MnCl2 + 2KCl + 8h3O}}}.
Соляная кислота (в стакане) взаимодействует с аммиаком
Nh4+HCl⟶Nh5Cl{\displaystyle {\ce {Nh4 + HCl -> Nh5Cl}}}.
HCl+AgNO3⟶AgCl↓+HNO3{\displaystyle {\ce {HCl + AgNO3 -> AgCl v + HNO3}}}.

Соляную кислоту получают растворением газообразного хлороводорода в воде. Хлороводород получают сжиганием водорода в хлоре, полученная таким способом кислота называется синтетической. Также соляную кислоту получают из абгазов — побочных газов, образующихся при различных процессах, например, при хлорировании углеводородов. Хлороводород, содержащийся в этих газах, называется абгазным, а полученная таким образом кислота — абгазной. В последние десятилетия доля абгазной соляной кислоты в объёме производства постепенно увеличивается, вытесняя кислоту, полученную сжиганием водорода в хлоре. Но полученная методом сжигания водорода в хлоре соляная кислота содержит меньше примесей и применяется при необходимости высокой чистоты.

В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии концентрированной серной кислоты на поваренную соль:

NaCl +h3SO4→150 ∘CNaHSO4 +HCl{\displaystyle {\ce {NaCl\ +h3SO4->[150~^{\circ }{\text{C}}]NaHSO4\ +HCl}}}.

При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:

2NaCl +h3SO4→550 ∘CNa2SO4 +2HCl{\displaystyle {\ce {2NaCl\ +h3SO4->[550~^{\circ }{\text{C}}]Na2SO4\ +2HCl}}}.

Возможно получение путём гидролиза хлоридов магния, алюминия (нагревается гидратированная соль):

MgCl2⋅6h3O→t, ∘CMgO +2HCl +5h3O{\displaystyle {\ce {MgCl2.6h3O->[t,~^{\circ }{\text{C}}]MgO\ +2HCl\ +5h3O}}},
AlCl3⋅6h3O→t, ∘CAl(OH)3 +3HCl +3h3O{\displaystyle {\ce {AlCl3.6h3O->[t,~^{\circ }{\text{C}}]Al(OH)3\ +3HCl\ +3h3O}}}.

Эти реакции могут идти не до конца с образованием основных хлоридов (оксихлоридов) переменного состава, например:

2MgCl2+h3O⟶Mg2OCl2+2HCl{\displaystyle {\ce {2MgCl2 + h3O -> Mg2OCl2 + 2HCl}}}[5]

Хлороводород хорошо растворим в воде. Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl{\displaystyle {\ce {HCl}}}, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl{\displaystyle {\ce {HCl}}} ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.

Промышленность[править | править код]

Медицина[править | править код]

  • Естественная составная часть желудочного сока человека. В концентрации 0,3—0,5 %, обычно в смеси с ферментом пепсином, назначается внутрь при недостаточной кислотности.

Высококонцентрированная соляная кислота — едкое вещество, при попадании на кожу вызывает сильные химические ожоги. Особенно опасно попадание в глаза. Для нейтрализации ожогов применяют раствор слабого основания, или соли слабой кислоты, обычно питьевой соды.

При открывании сосудов с концентрированной соляной кислотой пары хлороводорода, притягивая влагу воздуха, образуют туман, раздражающий глаза и дыхательные пути человека.

Реагируя с сильными окислителями (хлорной известью, диоксидом марганца, перманганатом калия) образует токсичный газообразный хлор.

В РФ оборот соляной кислоты концентрации 15 % и более — ограничен[6].

  • Austin S., Glowacki A. Hydrochloric Acid (англ.) // Ullmann's Encyclopedia of Industrial Chemistry. — Wiley, 2000. — doi:10.1002/14356007.a13_283.

Концентрация растворов

Способы выражения концентрации растворов

Существуют различные способы выражения состава раствора. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.

Массовая доля растворённого вещества
w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m:
w(B)= m(B) / m
Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества - CaCl2 в воде равна 0,06 или 6%. Это означает,что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г.

Пример
Сколько грамм сульфата натрия и воды нужно для приготовления 300 г 5% раствора?

Решение
m(Na2SO4) = w(Na2SO4) / 100 = (5300) / 100 = 15 г

где w(Na2SO4) - массовая доля в %,
m - масса раствора в г
m(H2O) = 300 г - 15 г = 285 г.

Таким образом, для приготовления 300 г 5% раствора сульфата натрия надо взять 15 г Na2SO4 и 285 г воды.

Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.
C(B) = n(B) / V = m(B) / (M(B)V),

где М(B) - молярная масса растворенного вещества г/моль.

Молярная концентрация измеряется в моль/л и обозначается "M". Например, 2 MNaOH - двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).

Пример
Какую массу хромата калия K2CrO4 нужно взять для приготовления 1,2 л 0,1 М раствора?

Решение M(K2CrO4) = C(K2CrO4)

V M(K2CrO4) = 0,1 моль/л 1,2 л 194 г/моль = 23,3 г.

Таким образом, для приготовления 1,2 л 0,1 М раствора нужно взять 23,3 г K2CrO4 и растворить в воде, а объём довести до 1,2 литра.

Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют моляльностью раствора.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.
Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.
Эоснования = Моснования / число замещаемых в реакции гидроксильных групп
Экислоты = Мкислоты / число замещаемых в реакции атомов водорода
Эсоли = Мсоли / произведение числа катионов на его заряд
Пример
Вычислите значение грамм-эквивалента (г-экв.) серной кислоты, гидроксида кальция и сульфата алюминия.
Э H2SO4 = М H2SO4 / 2 = 98 / 2 = 49 г
Э Ca(OH)2 = М Ca(OH)2 / 2 = 74 / 2 = 37 г
Э Al2(SO4)3 = М Al2(SO4)/ (23) = 342 / 2= 57 г

Величины нормальности обозначают буквой "Н". Например, децинормальный раствор серной кислоты обозначают "0,1 Н раствор H2SO4". Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой. Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4.

Пример
Рассчитайте молярность и нормальность 70%-ного раствора H2SO4 (r = 1,615 г/мл).

Решение
Для вычисления молярности и нормальности надо знать число граммов H2SO4 в 1 л раствора. 70% -ный раствор H2SO4 содержит 70 г H2SO4 в 100 г раствора. Это весовое количество раствора занимает объём
V = 100 / 1,615 = 61,92 мл
Следовательно, в 1 л раствора содержится 701000 / 61,92 = 1130,49 г H2SO4

Отсюда молярность данного раствора равна: 1130,49 / М (H2SO4) =1130,49 / 98 =11,53 M
Нормальность этого раствора (считая, что кислота используется в реакции в качестве двухосновной) равна 1130,49 / 49 =23,06 H
Пересчет концентраций растворов из одних единиц в другие
При пересчете процентной концентрации в молярную и наоборот, необходимо помнить, что процентная концентрация рассчитывается на определенную массу раствора, а молярная и нормальная - на объем, поэтому для пересчета необходимо знать плотность раствора. Если мы обозначим: с - процентная концентрация; M - молярная концентрация; N - нормальная концентрация; э - эквивалентная масса, r - плотность раствора; m - мольная масса, то формулы для пересчета из процентной концентрации будут следующими:
M = (cp 10) / m

N = (cp 10) / э

Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную.

Пример 1
Какова молярная и нормальная концентрация 12%-ного раствора серной кислоты, плотность которого р = 1,08 г/см3?

Решение
Мольная масса серной кислоты равна 98. Следовательно,
m(H2SO4) = 98 и э(H2SO4) = 98 : 2 = 49.

Подставляя необходимые значения в формулы, получим:
а) Молярная концентрация 12% раствора серной кислоты равна
M = (121,08 10) / 98 = 1,32 M

б) Нормальная концентрация 12% раствора серной кислоты равна
N = (121,08 10) / 49 = 2,64 H.

Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н. раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации.
Для пересчета из одной концентрации в другую можно использовать формулы:
M = (NЭ) / m

N = (Mm) / Э

Пример
Нормальная концентрация 1 М раствора серной кислоты N = (198) / 49 = 2 H.

Пример
Молярная концентрация 0,5 н. Na2CO3
M = (0,553) / 106 = 0,25 M.Упаривание, разбавление, концентрирование,

смешивание растворов
Имеется mг исходного раствора с массовой долей растворенного вещества w1 и плотностью r1.
Упаривание раствора
В результате упаривания исходного раствора его масса уменьшилась на Dm г. Определить массовую долю раствора после упаривания w2

Решение
Исходя из определения массовой доли, получим выражения для w1 и w2 (w2 > w1):
w1 = m1 / m
(где m1 - масса растворенного вещества в исходном растворе)
m1 = w1m

w2 = m1 / (m - Dm) = (w1m) / (m - Dm)

Пример
Упарили 60 г 5%-ного раствора сульфата меди до 50 г. Определите массовую долю соли в полученном растворе.
m = 60 г; Dm = 60 - 50 = 10 г; w1 = 5% (или 0,05)
w2 = (0,0560) / (60 - 10) = 3 / 50 = 0,06 (или 6%-ный)


Концентрирование раствора
Какую массу вещества (X г) надо дополнительно растворить в исходном растворе, чтобы приготовить раствор с массовой долей растворенного вещества w2?

Решение
Исходя из определения массовой доли, составим выражение для w1 и w2:
w1 = m1 / m2, (где m1 - масса вещества в исходном растворе).
m1 = w1m

w2 = (m1+x) / (m + x) = (w1m + x) / (m+x)

Решая полученное уравнение относительно х получаем:
w2m + w2 x = w1 m + x

w2m - w1 m = x - w2 x

(w2 - w1)

m = (1 - w2) x

x = ((w2 - w1)m) / (1 - w2)

Пример
Сколько граммов хлористого калия надо растворить в 90 г 8%-ного раствора этой соли, чтобы полученный раствор стал 10%-ным?
m = 90 г
w1 = 8% (или 0,08), w2 = 10% (или 0,1)
x = ((0,1 - 0,08) 90) / (1 - 0,1) = (0,02 90) / 0,9 = 2 г


Смешивание растворов с разными концентрациями
Смешали m1 граммов раствора №1 c массовой долей вещества w1 и m2 граммов раствора №2 c массовой долей вещества w2. Образовался раствор (№3) с массовой долей растворенного вещества w3. Как относятся друг к другу массы исходных растворов?

Решение
Пусть w1 > w2, тогда w1 > w3 > w2. Масса растворенного вещества в растворе №1 составляет w1

m1, в растворе №2 - w2 m2. Масса образовавшегося раствора (№3) - (m1 - m2). Сумма масс растворенного вещества в растворах №1 и №2 равна массе этого вещества в образовавшемся растворе (№3):

w 1m1 + w 2 m2 = w3 (m1 + m2)

w1m1 + w 2 m2 = w3 m1 + w3 m2

w 1m1 - w 3 m1 = w3 m2 - w2 m2

(w1- w3)m1 = (w3- w2) m2

m1 / m2 = (w3- w2 ) / (w1- w3)
Таким образом, массы смешиваемых растворов m1 и m2 обратно пропорциональны разностям массовых долей w1 и w2 смешиваемых растворов и массовой доли смеси w3. (Правило смешивания).

Для облегчения использования правила смешивания применяют правило креста :

w1
\

(w3 - w2)
/
m1

w3

/
w2

\
(w1 - w3)
m2


m1 / m2 = (w3 - w2) / (w1 - w3)
Для этого по диагонали из большего значения концентрации вычитают меньшую, получают (w1 - w3), w1 > w3 и (w3 - w2), w3 > w2. Затем составляют отношение масс исходных растворов m1 / m2 и вычисляют.

Пример
Определите массы исходных растворов с массовыми долями гидроксида натрия 5% и 40%, если при их смешивании образовался раствор массой 210 г с массовой долей гидроксида натрия 10%.

40%
\

5%
/
m1

10%

/
5%

\
30%
m2=210-m1


5 / 30 = m1 / (210 - m1)
1/6 = m1 / (210 - m1)
210 - m1 = 6m1
7m1 = 210
m1 =30 г; m2 = 210 - m1 = 210 - 30 = 180 г

Разбавление раствора
Исходя из определения массовой доли, получим выражения для значений массовых долей растворенного вещества в исходном растворе №1 (w1) и полученном растворе №2 (w2):
w1 = m1 / (r1V1) откуда V1= m1 /( w1 r1)

w2 = m2 / (r2V2)

m2 = w2r2 V2

Раствор №2 получают, разбавляя раствор №1, поэтому m1 = m2. В формулу для V1 следует подставить выражение для m2. Тогда
V1= (w2r2 V2) / (w1 r1)

m2 = w2 • r2 • V2

или

w1r1 • V1 = w2r2 • V2
m1(раствор)
m2(раствор)


m1(раствор) / m2(раствор) = w2 / w1
При одном и том же количестве растворенного вещества массы растворов и их массовые доли обратно пропорциональны друг другу.

Пример
Определите массу 3%-ного раствора пероксида водорода, который можно получить разбавлением водой 50 г его 3%-ного раствора.
m1(раствор) / m2(раствор) = w2 / w1
50 / x = 3 / 30
3x = 50

30 = 1500

x = 500 г
Последнюю задачу можно также решить, используя "правило креста":

30%
\

3%
/
50

3%

/
0%

\
27%
X


3 / 27 = 50 / x
x = 450 г воды
450 г + 50 г = 500 г


Молярная концентрация | CHEMEGE.RU

Молярная концентрация (молярность), Сm – это характеристика раствора, способ выражения концентрации растворенного вещества в растворе. Молярная концентрация равна отношению количества растворенного вещества к объему раствора:

где  νр.в. – количество растворенного вещества, моль

        Vр-ра – объем раствора, л

Иногда молярную концентрацию вещества А обозначают так: [A].

Молярная концентрация измеряется в моль/л или М.

 

Несколько задач на молярную концентрацию.

1. Определите молярную концентрацию раствора азотной кислоты, если в 500 мл раствора содержится 6,3г азотной кислоты. Ответ: 0,2М

Решение: молярная концентрация — это отношение количества растворенного вещества к объему раствора в литрах. Количество азотной кислоты:

ν(HNO3) = m/M(HNO3) = 6,3 г/ 63 г/моль = 0,1 моль

С(HNO3) = ν(HNO3)/Vр-ра = 0,1 моль/ 0,5 л = 0,2 моль/л

2. Определить молярную концентрацию раствора серной кислоты, если в 2л раствора содержится 0,98г кислоты. Ответ: 0,005М

3. Какую массу хлорида натрия надо растворить в воде, чтобы получить 1л раствора с молярной концентрацией соли 0,02моль/л? Ответ: 1,17г

4. Какое количество вещества (в моль) гидроксида калия содержится в 200мл раствора, если молярная концентрация щёлочи равна 0,9моль/л? Ответ: 0,18моль

5. Какая масса хлороводорода содержится в 250мл раствора соляной кислоты с молярной концентрацией 1 моль/л? Ответ: 9,125г
6. В каком объёме раствора серной кислоты с концентрацией 1 моль/л содержится 4,9г серной кислоты? Ответ: 50мл

7. Смешали 400мл раствора хлорида натрия с молярной концентрацией 1 моль/л и 600мл раствора хлорида натрия с концентрацией соли 2 моль/л. Определить количество вещества хлорида натрия в получившемся растворе и молярную концентрацию этого раствора. Ответ: 1,6М

Концентрация смеси — Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация[3].

Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.

Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. По рекомендациям ИЮПАК,[4] обозначается символом w{\displaystyle w}, в русскоязычной литературе чаще встречается обозначение ω{\displaystyle \omega }. Массовая доля — безразмерная величина, как правило выражается в долях единицы или в процентах (для выражения массовой доли в процентах следует умножить указанное выражение на 100 %):

ωB=mBm{\displaystyle \omega _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m}}}

где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;
  • m{\displaystyle m} — общая масса всех компонентов смеси.

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример: зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 2887 дней]
ω, % 5 10 15 20 30 40 50 60 70 80 90 95
ρ H2SO4, г/мл 1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах.

ϕB=VB∑Vi{\displaystyle \phi _{\mathrm {B} }={\frac {V_{\mathrm {B} }}{\sum V_{i}}}},

где:

  • ϕB{\displaystyle \phi _{\mathrm {B} }} — объёмная доля компонента B,
  • VB — объём компонента B;
  • ∑Vi{\displaystyle \sum V_{i}} — сумма объёмов всех компонентов до смешивания.

При смешивании жидкостей их суммарный объём может уменьшаться, поэтому не следует заменять сумму объёмов компонентов на объём смеси.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)[править | править код]

Молярная концентрация (молярность, мольность[5]) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также используют выражение «в молярности». Возможно другое обозначение молярной концентрации, которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным, записывают «0,5 M».

По рекомендации ИЮПАК, обозначается буквой c{\displaystyle c} или [B]{\displaystyle [B]}, где B — вещество, концентрация которого указывается.[6]

Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам.

cB=nBV{\displaystyle {c_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)[править | править код]

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

c(feq B)=c((1/z) B)=z⋅cB=z⋅nBV=1feq⋅nBV{\displaystyle c(f_{eq}~\mathrm {B} )=c{\big (}(1/z)~\mathrm {B} {\big )}=z\cdot c_{\mathrm {B} }=z\cdot {\frac {n_{\mathrm {B} }}{V}}={\frac {1}{f_{eq}}}\cdot {\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x{\displaystyle x} (а для газов — y{\displaystyle y})[7], также в литературе встречаются обозначения χ{\displaystyle \chi }, X{\displaystyle X}.

xB=nB∑ni{\displaystyle x_{\mathrm {B} }={\frac {n_{\mathrm {B} }}{\sum n_{i}}}},

где:

  • xB{\displaystyle x_{\mathrm {B} }} — мольная доля компонента B;
  • nB{\displaystyle n_{\mathrm {B} }} — количество компонента B, моль;
  • ∑ni{\displaystyle \sum n_{i}} — сумма количеств всех компонентов.

Мольная доля может использоваться, например, для количественного описания уровня загрязнений в воздухе, при этом её часто выражают в частях на миллион (ppm — от англ. parts per million). Однако, как и в случае с другими безразмерными величинами, во избежание путаницы, следует указывать величину, к которой относится указанное значение.

Моляльность (молярная весовая концентрация, моляльная концентрация)[править | править код]

Моляльная концентрация (моляльность,[5] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

mB=nBmA{\displaystyle {m_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{m_{\mathrm {A} }}}},

где:

Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ{\displaystyle \gamma } или ρ{\displaystyle \rho }[8].

ρB=mBV{\displaystyle \rho _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{V}}}.

где:

  • mB{\displaystyle m_{\mathrm {B} }} — масса растворённого вещества;
  • V{\displaystyle V} — общий объём раствора;

В аналитической химии используется понятие титр по растворённому или по определяемому веществу (обозначается буквой T{\displaystyle T}).

По рекомендациям ИЮПАК концентрация частиц обозначается буквой C{\displaystyle C}[9], однако также часто встречается обозначение n{\displaystyle n} (не путать с количеством вещества).

CB=NBV=nB⋅NAV=cB⋅NA{\displaystyle C_{\mathrm {B} }={\frac {N_{\mathrm {B} }}{V}}={\frac {n_{\mathrm {B} }\cdot N_{\mathrm {A} }}{V}}=c_{\mathrm {B} }\cdot N_{\mathrm {A} }},

где:

Весообъёмные (массо-объёмные) проценты[править | править код]

Иногда встречается использование так называемых «весообъёмных процентов»[10], которые соответствуют массовой концентрации вещества, где единица измерения г/(100 мл) заменена на процент. Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[11] Стоит отметить, что поскольку масса и объём имеют разные размерности, использование процентов для их соотношения формально некорректно. Также международное бюро мер и весов[12] и ИЮПАК[13] не рекомендуют добавлять дополнительные метки (например «% (m/m)» для обозначения массовой доли) к единицам измерения.

Другие способы выражения концентрации[править | править код]

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, при приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства[править | править код]

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций к другим[править | править код]

В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.

От массовой доли к молярности[править | править код]

cB=ρ⋅ωBM(B){\displaystyle c_{\mathrm {B} }={\frac {\rho \cdot \omega _{\mathrm {B} }}{M(\mathrm {B} )}}},

где:

  • cB{\displaystyle c_{\mathrm {B} }} — молярная концентрация вещества B
  • ρ{\displaystyle \rho } — плотность раствора;
  • ωB{\displaystyle \omega _{\mathrm {B} }} — массовая доля вещества B;
  • M(B){\displaystyle M(\mathrm {B} )} — молярная масса вещества B.

Если плотность раствора выражена в г/мл, а молярная масса в г/моль, то для выражения ответа в моль/л выражение следует домножить на 1000 мл/л. Если массовая доля выражена в процентах, то выражение следует также разделить на 100 %.

От молярной концентрации к нормальной[править | править код]

c((1/z) B)=cB⋅z{\displaystyle {c((1/z)~\mathrm {B} )}={c_{\mathrm {B} }}\cdot {z}},

где:

От массовой доли к титру[править | править код]

T=ρ⋅ω{\displaystyle {T}={\rho }\cdot {\omega }},

где:

  • ρ{\displaystyle \rho } — плотность раствора, г/мл;
  • ω{\displaystyle \omega } — массовая доля растворённого вещества, в долях от 1;

От молярности к титру[править | править код]

T=cB⋅M{\displaystyle {T}={c_{\mathrm {B} }}\cdot {M}},

где:

  • cB{\displaystyle {c_{\mathrm {B} }}} — молярная концентрация;
  • M{\displaystyle M} — молярная масса растворённого вещества.

Если молярная концентрация выражена в моль/л, а молярная масса — в г/моль, то для выражения ответа в г/мл его следует разделить на 1000 мл/л.

От моляльности к мольной доле[править | править код]

xB=mBmB+1M(A){\displaystyle x_{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m_{\mathrm {B} }+{\frac {1}{M(\mathrm {A} )}}}}},

где:

  • mB{\displaystyle m_{\mathrm {B} }} — моляльность,
  • M(A){\displaystyle M(\mathrm {A} )} — молярная масса растворителя.

Если моляльность выражена в моль/кг, а молярная масса растворителя в г/моль, то единицу в формуле следует представить как 1000 г/кг, чтобы слагаемые в знаменателе имели одинаковые единицы измерения.

  1. International Union of Pure and Applied Chemistry. concentration (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.C01222.
  2. International Union of Pure and Applied Chemistry. fraction (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.F02494.
  3. ↑ IUPAC Gold Book internet edition: "concentration".
  4. International Union of Pure and Applied Chemistry. IUPAC Gold Book - mass fraction, w (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  5. 1 2 Z. Sobecka, W. Choiński, P. Majorek. Dictionary of Chemistry and Chemical Technology: In Six Languages: English / German / Spanish / French / Polish / Russian. — Elsevier, 2013-09-24. — С. 641. — 1334 с. — ISBN 9781483284439.
  6. International Union of Pure and Applied Chemistry. IUPAC Gold Book - amount concentration, c (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  7. International Union of Pure and Applied Chemistry. IUPAC Gold Book - amount fraction, x ( y for gaseous mixtures) (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  8. International Union of Pure and Applied Chemistry. IUPAC Gold Book - mass concentration, γ, ρ (англ.). goldbook.iupac.org. Дата обращения 16 декабря 2018.
  9. International Union of Pure and Applied Chemistry. IUPAC Gold Book - number concentration, C,n (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  10. ↑ Способы приготовления растворов на МедКурс. Ru
  11. Бернштейн И. Я., Каминский Ю. Л. Спектрофотометрический анализ в органической химии. — 2-е изд. — Ленинград: Химия, 1986. — с. 5
  12. ↑ The International System of Units (SI) (неопр.). www.bipm.org. Дата обращения 23 декабря 2018.
  13. ↑ Quantities, Units and Symbols in Physical Chemistry (неопр.) (недоступная ссылка). www.iupac.org. Дата обращения 23 декабря 2018. Архивировано 20 декабря 2016 года.

Урок 15. Моляльность и молярность – HIMI4KA

В уроке 15 «Моляльность и молярность» из курса «Химия для чайников» рассмотрим понятия растворитель и растворенное вещество научимся выполнять расчет молярной и моляльной концентрации, а также разбавлять растворы. Невозможно объяснить что такое моляльность и молярность, если вы не знакомы с понятием моль вещества, поэтому не поленитесь и прочитайте предыдущие уроки. Кстати, в прошлом уроке мы разбирали задачи на выход реакции, посмотрите если вам интересно.

Химикам нередко приходится работать с жидкими растворами, так как это благоприятная среда для протекания химических реакций. Жидкости легко смешивать, в отличие от кристаллических тел, а также жидкость занимает меньший объем, по сравнению с газом. Благодаря этим достоинствам, химические реакции могут осуществляться гораздо быстрее, так как исходные реагенты в жидкой среде часто сближаются и сталкиваются друг с другом. В прошлых уроках мы отмечали, что вода относится к полярным жидкостям, и потому является неплохим растворителем для проведения химических реакций. Молекулы H2O, а также ионы H+ и OH, на которых вода диссоциирована в небольшой степени, могут способствовать запуску химические реакций, благодаря поляризации связей в других молекулах или ослаблению связи между атомами. Вот почему жизнь на Земле зародилась не на суше или в атмосфере, а именно в воде.

Растворитель и растворенное вещество

Раствор может быть образован путем растворения газа в жидкости или твердого тела в жидкости. В обоих случаях жидкость является растворителем, а другой компонент — растворенное вещество. Когда раствор образован путем смешивания двух жидкостей, растворителем считается та жидкость, которая находится в большем количестве, иначе говоря имеет бОльшую концентрацию.

Расчет концентрации раствора

Молярная концентрация

Концентрацию можно выражать по разному, но наиболее распространенный способ — указание его молярностиМолярная концентрация (молярность) — это число молей растворенного вещества в 1 литре раствора. Единица молярности обозначается символом M. Например два моля соляной кислоты на 1 литр раствора обозначается 2 М HCl. Кстати, если на 1 литр раствора приходится 1 моль растворенного вещества, тогда раствор называется одномолярным. Молярная концентрация раствора обозначается различными символами:

  • cx, Смx, [x], где x — растворенное вещество

Формула для вычисления молярной концентрации (молярности):

где n — количество растворенного вещества в молях, V — объем раствора в литрах.

Пару слов о технике приготовления растворов нужной молярности. Очевидно, что если добавить к одному литру растворителя 1 моль вещества, общий объем раствора будет чуть больше одного литра, и потому будет ошибкой считать полученный раствор одномолярным. Чтобы этого избежать, первым делом добавляем вещество, а только потом доливаем воду, пока суммарный объем раствора не будет равным 1 л. Полезно будет запомнить приближенное правило аддитивности объемов, которое гласит, что объем раствора приближенно равен сумме объемов растворителя и растворенного вещества. Растворы многих солей приближенно подчиняются данному правилу.

Пример 1. Химичка дала задание растворить в литре воды 264 г сульфата аммония (NH4)2SO4, а затем вычислить молярность полученного раствора и его объем, основываясь на предположении об аддитивности объемов. Плотность сульфата аммония равна 1,76 г/мл.

Решение:

Определим объем (NH4)2SO4 до растворения:

  • 264 г / 1,76 г/мл = 150 мл = 0,150 л

Пользуясь правилом аддитивности объемов, найдем окончательный объем раствора:

  • 1,000 л + 0,150 л = 1,150 л

Число молей растворенного сульфата аммония равно:

  • 264 г / 132 г/моль = 2,00 моля (Nh5)2SO4

Завершающий шаг! Молярность раствора равна:

  • 2,000 / 1,150 л = 1,74 моль/л, т.е 1,74 М (NH4)2SO4

Приближенным правилом аддитивности объемов можно пользоваться только для грубой предварительной оценки молярности раствора. Например, в примере 1, объем полученного раствора на самом деле имеет молярную концентрацию равную 1,8 М, т.е погрешность наших расчетов составляет 3,3%.

Моляльная концентрация

Наряду с молярностью, химики используют моляльность, или моляльную концентрацию, в основе которой учитывается количество использованного растворителя, а не количество образующегося раствора. Моляльная концентрация — это число молей растворенного вещества в 1 кг растворителя (а не раствора!). Моляльность выражается в моль/кг и обозначается маленькой буквой m. Формула для вычисления моляльной концентрации:

где n — количество растворенного вещества в молях, m — масса растворителя в кг

Для справки отметим, что 1 л воды = 1 кг воды, и еще, 1 г/мл = 1 кг/л.

Пример 2. Химичка попросила определить моляльность раствора, полученного при растворении 5 г уксусной кислоты C2H4O2 в 1 л этанола. Плотность этанола равна 0,789 г/мл.

Решение:

Число молей уксусной кислоты в 5 г равно:

  • 5,00 г / 60,05 г/моль = 0,833 моля C2H4O2

Масса 1 л этанола равна:

  • 1,000 л × 0,789 кг/л = 0,789 кг этанола

Последний этап. Найдем моляльность полученного раствора:

  • 0,833 моля / 0,789 кг растворителя = 0,106 моль/кг

Единица моляльности обозначается Мл, поэтому ответ также можно записать 0,106 Мл.

Разбавление растворов

В химической практике часто занимаются разбавлением растворов, т.е добавлением растворителя. Просто нужно запомнить, что число молей растворенного вещества при разбавлении раствора остается неизменным. И еще запомните формулу правильного разбавления раствора:

  • Число молей растворенного вещества = c1V1 = c2V2

где с1 и V1 — молярная концентрация и объем раствора до разбавления, с2 и V2 — молярная концентрация и объем раствора после разбавления. Рассмотрите задачи на разбавление растворов:

Пример 3. Определите молярность раствора, полученного разбавлением 175 мл 2,00 М раствора до 1,00 л.

Решение:

В условие задача указаны значения с1, V1 и V2, поэтому пользуясь формулой разбавления растворов, выразим молярную концентрацию полученного раствора с2

  • с2 = c1V1 / V2 = (2,00 М × 175 мл) / 1000 мл = 0,350 М

Пример 4 самостоятельно. До какого объема следует разбавить 5,00 мл 6,00 М раствора HCl, чтобы его молярность стала 0,1 М?

Ответ: V2 = 300 мл

Без сомнения, вы и сами догадались, что урок 15 «Моляльность и молярность» очень важный, ведь 90% все лабораторных по химии связаны с приготовлением растворов нужной концентрации. Поэтому проштудируйте материал от корки до корки. Если у вас возникли вопросы, пишите их в комментарии.

Раствор соляной кислоты, pH раствора

Раствор соляной кислоты (HCl) объемом 1,8 мл (плотность 1,18 г/мл) с массовой долей вещества 36 процентов, разбавили водой до 1 литра. Найти pH  раствора полученного?

Решение задачи

Запишем уравнение диссоциации соляной кислоты:

Вычислим массу 1,8 мл 36-процентного раствора соляной кислоты (HCl).

Найдем, массу раствора соляной кислоты (HCl) по формуле, устанавливающей связь между массой и объемом раствора:

m = 1,18 г/мл ∙ 1,8 мл = 2,124 (г).

Найдем, сколько в растворе содержится соляной кислоты (HCl) (в г). Для расчета будем использовать формулу нахождения массовой доли растворенного вещества в растворе:

Массовая доля растворенного вещества в растворе – это отношение массы растворенного вещества к массе раствора. Выражается в долях единицы или в %. Следует отметить, что массовая доля растворенного вещества в растворе, выраженная в %, называется процентной концентрацией раствора.

Откуда выразим m (вещества):

Получаем:

m (HCl) = 2,124 ∙ 0,36 = 0,765 (г).

Если раствор соляной кислоты (HCl) 36-процентный, то массовая доля соляной кислоты (HCl) в нем 0,36.

Учитывая, что молярная масса соляной кислоты (HCl) равна 36,5 г/моль, рассчитаем химическое количество соляной кислоты (HCl) в растворе, используя формулу, которая устанавливает связь между химическим количеством вещества и массой:

Получаем:

n (HCl) = 0,765/36,5 = 0,021 (моль).

Учитывая, что объем раствора разбавили водой (H2O) до 1 л, найдем молярную концентрацию раствора соляной кислоты (HCl) по формуле:

Молярная концентрация показывает количество растворенного вещества (моль), содержащегося в 1 л раствора.

Получаем:

По уравнению диссоциации вычислим, сколько моль ионов водорода (H+)образуется при полной диссоциации 0,021  моль раствора соляной кислоты (HCl):

при диссоциации 1  моль HClобразуется 1 моль ионов H+

при диссоциации 0,021  моль HClобразуется  моль ионов H+

Откуда:

Следовательно, концентрация ионов водорода ([H+]) равна 0,021 моль.

Вычислим pH раствора соляной кислоты (HCl) по формуле:

Водородный показатель (pH) раствора численно равен отрицательному десятичному логарифму концентрации ионов водорода в этом растворе.

Получаем:

Ответ:

pH раствора 1,678.

Формула соляной кислоты в химии

Определение и формула соляной кислоты

Формула –

Молярная масса равна г/моль.

Физические свойства – бесцветная едкая жидкость, на воздухе «дымит».

Техническая соляная кислота имеет желтый цвет из-за наличия примесей железа, хлора и других веществ .

Максимальная концентрация в растворе при равна 38%, плотность этого раствора г/см. Молярная масса г/моль.

Соляная кислота – сильная одноосновная кислота, константа диссоциации . Образует соли – хлориды.

Химические свойства соляной кислоты

  • Взаимодействует с металлами, находящимися в электрохимическом ряду напряжений до водорода с образованием соответствующих хлоридов и выделением водорода:

       

  • Взаимодействует с оксидами металлов с образованием растворимых солей и воды:

       

  • Взаимодействует с гидроксидами металлов с образованием растворимых хлоридов и воды:

       

  • Взаимодействует с солями металлов, образованных более слабыми кислотами:

       

  • Реагирует с сильными окислителями (перманганатом калия, диоксидом марганца) с выделением хлора:

       

  • Реагирует с аммиаком с образованием густого белого дыма, состоящего из мельчайших кристалликов хлорида аммония:

       

Качественной реакцией на соляную кислоту и её соли является реакция с нитратом серебра, в результате которой образуется белый творожистый осадок хлорида серебра, нерастворимый в азотной кислоте:

   

Получают соляную кислоту растворением газообразного хлороводорода в воде.

Применение

Соляная кислота применяется в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при паянии и лужении, для получения хлоридов металлов (цинка, марганца, железа и др.). Смеси соляной кислоты с ПАВ используются для очистки керамических и металлических изделий от загрязнений и дезинфекции.

В пищевой промышленности соляная кислота используется в качестве регулятора кислотности , пищевой добавки . Является естественной составной частью желудочного сока человека.

Концентрированная соляная кислота – едкое вещество, при попадании на кожу вызывает сильные химические ожоги. Особенно опасно попадание кислоты в глаза. Для нейтрализации ожогов применяют раствор слабой щёлочи (питьевой соды).

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Соляная кислота - физические свойства, использование в травлении при цинковании


Соляная кислота – это раствор хлористого водорода в воде. Хлористый водород (HCl) при обычных условиях бесцветный газ со специфическим острым запахом. Однако мы имеем дело с его водными растворами, поэтому остановимся только на них.

Соляная кислота – бесцветный прозрачный раствор с острым запахом хлористого водорода. В присутствии примесей железа, хлора или других веществ кислота имеет желтовато-зеленый цвет. Плотность раствора соляной кислоты  зависит от концентрации хлористого водорода в ней; некоторые данные приведены в таблице 6.9.

Таблица 6.9. Плотность растворов соляной кислоты различной концентрации при 20°С.

Содержание HCl

Плотность d, г/см3

Содержание HCl

Плотность d, г/см3

%

г/л

%

г/л

4

40,7

1,018

28

319,0

1,139

10

104,7

1,047

30

344,8

1,149

16

174,2

1,078

32

371,0

1,159

20

219,6

1,098

34

397,5

1,169

24

268,5

1,119

36

424,4

1,179

Из этой таблицы видно, что зависимость плотности раствора соляной кислоты от ее концентрации с удовлетворительной для технических расчетов точностью можно описать формулой:

d = 1 + 0,5*(%) / 100 

При кипении разбавленных растворов содержание HCl в парах меньше, чем в растворе, а при кипении концентрированных растворов - больше, чем в растворе, что отражено в приведенной на рис. 6.12 диаграмме равновесия. Постоянно кипящая смесь (азеотроп) при атмосферном давлении имеет состав 20,22 % вес. HCl, температуру кипения 108,6°С.

Наконец, еще одно важное преимущество соляной кислоты - это практически полная независимость времени ее приобретения от времени года. Как видно из рис. № 6.13, кислота промышленной концентрации (32-36%) замерзает при температурах, практически недостижимых для европейской части России (от -35 до -45°С), в отличие от серной кислоты, которая замерзает при плюсовых температурах, что требует введения операции разогрева цистерн.

Соляная кислота не обладает недостатками, присущими серной кислоте.

Во-первых, хлористое железо обладает повышенной растворимостью в растворе соляной кислоты (рис. 6.14), что позволяет поднять концентрацию хлористого железа в растворе до величины 140 г/л и даже больше; исчезает опасность образования осадка на поверхности.

Работа с соляной кислотой может осуществляться при любой температуре внутри здания (даже при 10°С), и это не вызывает заметных изменений в составе раствора.

Рис. 6.12. Диаграмма равновесия жидкость – пар для системы HCl – H2O.

Рис. 6.13. Диаграмма состояния (плавкости) системы HCl–H2O.

Рис. 6.14. Равновесие в системе HCl – FeCl2.

Наконец, еще очень важное преимущество соляной кислоты - это полная совместимость с флюсом, в котором используются именно хлориды.

Некоторым недостатком соляной кислоты как реактива является высокая летучесть. Нормативами допускается концентрация 5 мг/м3 объема воздуха в цехе. Зависимость упругости паров в равновесном состоянии над кислотой различной процентной концентрации дана в таблице 6.10. В целом при концентрации кислоты в ванне менее 15% масс это условие удовлетворяется. Однако при повышении температур в цехе (то есть в летнее время) возможно превышение этого показателя. Определенную информацию о том, какая концентрация кислоты при конкретной температуре цеха допустима, можно определить из рис. 6.15.

Зависимость скорости травления от концентрации и температуры отображена на рис. 6.16.

Недостатки травления обычно вызываются следующим:

  • использованием кислоты с большей или меньшей концентрацией, по сравнению с оптимальной;
  • малой длительностью травления (ожидаемую длительность травления при разных концентрациях кислоты и железа можно оценить из рис. 6.17;
  • пониженной температурой по сравнению с оптимальной;
  • отсутствием перемешивания;
  • ламинарным движением травильного раствора.

Эти проблемы обычно решаются с помощью конкретных технологических приемов.

Таблица 6.10. Зависимость равновесной концентрации хлористого водорода от концентрации кислоты в ванне.

Концентрация кислоты, %

Концентрация HСl в воздухе, мг/м3

Концентрация кислоты, %

Концентрация HСl в воздухе, мг/м3

26

18 500 (20°C)

16

200 (20°C)

24

4 500 (20°C)

10

16 (30°C)

20

800 (30°C)

6

3 (30°C)

Рис. 6.15. Зависимость разрешенной температуры травления от концентрации соляной кислоты в ванне.

Рис. 6.16. Зависимость скорости травления изделий в соляной кислоте от концентрации и температуры раствора.

Рис. 6.17. Номограмма для расчета продолжительности травления изделий в растворах с различной концентрацией HCl и FeCl2.

Возможно Вас так же заинтересуют следующие статьи: comments powered by HyperComments

Соляная кислота, растворы концентрации - Справочник химика 21

    Удельный вес неразбавленной соляной кислоты составляет около 1,19. Удельный вес растворов соляной кислоты применяемых концентраций (3—7%) составляет 1,015—1,035. [c.49]

    Стандартный раствор хлорида магния приготовили растворением 0,1065 г чистого оксида магния в соляной кислоте, раствор разбавили и довели водой до 250,0 мл в мерной колбе. Пробу приготовленного раствора объемом 20,00 мл использовали для стандартизации раствора ЭДТА и титровали при pH 10,0. На титрование израсходовали 19,75 мл раствора ЭДТА. Вычислить концентрацию (моль/л) раствора ЭДТА. Ответ 0,01070 моль/л. [c.250]


    Во сколько раз уменьшится концентрация нонов серебра в насыш,ениом растворе Ag l, если прибавить к нему столько соляной кислоты, чтобы концентрация ионов С1" в растворе стала равной 0,03 моль/л  [c.145]

    Соляная кислота, раствор концентрации с = 0,3 моль/л (см. метод 1). [c.266]

    Резиновые покрытия (гуммирование). Для защиты химических аппаратов от агрессивных сред и абразивного износа широко применяют листовые покрытия резиной, которые устойчивы во многих агрессивных средах (в соляной кислоте любой концентрации, в растворах серной кислоты концентрации до 70%, в атмосфере влажного хлора, во многих растворителях и др.). Температурные пределы применения резиновых покрытий от —50 до + 100°С. Резиновые покрытия отличаются высокой стойкостью к вибрации и резким температурным перепадам. Гуммирование применяют для защиты емкостных и колонных аппаратов, железнодорожных цистерн, мешалок, деталей трубопроводов, центрифуг и многих других изделий. [c.24]

    Как известно, взаимодействие металлов с серной кислотой происходит различно в зависимости от концентрации кислоты и природы металла. Разбавленная серная кислота действует на металлы подобно разбавленной соляной кислоте растворяет металлы, стоящие в ряду напряжений до олова включительно. Приэтом водородные ионы разведенной НзЗО. окисляют атомы металла, отдающие электроны. Так, например, окисление атомов двухналентного металла (Ме) может быть представлено схемой [c.95]

    В 100 г 10%-ного раствора соляной кислоты растворили 2,9 л хлористого водорода, измеренного при температуре 17°С и давлении 740 мм рт. ст. Определите концентрацию (какую ) полученного раствора. [c.21]

    М, 0,01М растворов соляной кислоты растворами едкого натра соответствующих концентраций. [c.62]

    Соляная кислота — раствор хлороводорода НС1 в воде — одноосновная. Это бесцветная жидкость с резким запахом хлороводорода техническая кислота обычно окрашена примесями в желтый цвет. Максимальная концентрация соляной кислоты —36% НС1, плотность 1,18 г/см Соляная кислота — одна из самых сильных кислот. Она энергично реагирует с металлами, стоящими в ряду напряжений до водорода, образуя хлориды, например  [c.104]


    Приготовьте насыщенные растворы (10—20 мл) хлорида натрия в соляной кислоте различных концентраций 1 0,1 0,01 М или в кислоте, полученной 2—10-кратным разбавлением имеющейся в лаборатории концентрированной кислоты. Тем же методом определите растворимость хлорида атрия. При выпаривании раствора сушильный шкаф следует поместить под тягу, чтобы хлороводород не попадал в воздух лаборатории. [c.237]

    Для определения содержания гидроокиси натрия в каком-либо растворе едкой щелочи к отмеренному количеству анализируемого раствора постепенно приливают раствор соляной кислоты известной концентрации прибавление раствора кислоты ведут до тех пор, пока раствор не станет нейтральным. Измерив объем раствора соляной кислоты (известной концентрации), затраченный на нейтрализацию раствора едкой щелочи, можно вычислить количество определяемого вещества — гидроокиси натрия. Для определения содержания двухвалентного железа в каком-либо растворе к нему прибавляют постепенно раствор марганцовскислого калия (с известной концентрацией). Определив объем раствора марганцовокислого калия, необходимый для окисления двухвалентного железа до трехвалентного, легко вычислить содержание железа в анализируемом растворе. [c.24]

    Соляная кислота, раствор концентрации с - 0,3 моль/л. Разбавляют 10 мл концентрированной соляной кислоты в 1 л воды. [c.260]

    Навеску оксида мышьяка(III) 0,1320 г растворяют в 5 мл раствора гидроксида натрия, добавляют 10 мл воды и 10 мл ЮМ раствора соляной кислоты. Раствор переносят в мерную колбу вместимостью 500 мл, доливают до метки водой и перемешивают (раствор А). Концентрация мышьяка в растворе А составляет 0,2 мг/мл. [c.175]

    Алюминий легко растворяется в соляной кислоте любой концентрации  [c.151]

    Для перекачивания кислот и щелочей, в частности, соляной кислоты любой концентрации, разбавленной серной кислоты, фтористоводородной и кремнефтористоводородной кислот, а также растворов солей, хлорированных кислотных растворов, фторированных растворов, растворов хлористого аммония, гипохлорита применяются гуммированные улиткообразные насосы, рабочие поверхности которых покрыты слоем резины. [c.50]

    Колбу соединяют с обратным холодильником, ставят на водяную баню или электрическую плитку с закрытой спиралью и содержимое колбы кипятят 30 мин. При испытании масел с жировыми присадками при ориентировочном испытании масла с неизвестным числом омыления содержимое колбы кипятят 60 мин. По-истечении указанного времени нагрев колбы прекращают, промывают внутреннюю трубку холодильника 5 мл спирто-толуольной смеси и дают ей стечь в течение 2 мин. Затем в колбу добавляют 1 мл раствора фенолфталеина или щелочного голубого 6В и сразу же в горячем состоянии содержимое колбы титруют раствором соляной кислоты соответствующей концентрации сначала со средней скоростью, затем замедленно, слегка перемешивая содержимое колбы. После исчезновения илн изменения окраски, которая замечается в конце титрования, добавляют в колбу 1—2 капли раствора соляной кислоты и оставляют колбу на 30 с, слегка перемешивая содержимое колбы несколько раз. При применении в качестве индикатора фенолфталеина отсутствие окрашивания в течение 30 с, а при применении щелочного голубого 6В появление синей или сине-зеленой окраски указывает на конец титрования. [c.179]

    Некоторые смеси разделить фракционной перегонкой нельзя. Так, например, смесь, состоящая из 7 частей этанола и 93 частей бензола, кипит и нераздельно перегоняется при 60 °С, в то время как спирт кипит при 78, а бензол при 80 °С. Иногда подобные смеси имеют температуру кипения выше, чем составляющие ее компоненты. Раствор соляной кислоты с концентрацией 20,2 % кипит при 110°С, тогда как температура кипения воды 100°С, а хлороводорода —84 °С. 

Работа № 1 способы выражения концентрации растворов. Определение концентрации соляной кислоты титрованием

Растворы – гомогенные системы, состоящие из двух или нескольких компонентов. Растворенноевеществов виде атомов, молекул или ионов равномерно распределено врастворителе. В случае водных растворов растворителем является вода.

Основной количественной характеристикой раствора является концентрация– величина, показывающая, сколько вещества растворено в определенном количестве (массе или объеме) растворителя. Существует несколько способов выражения концентрации растворов.

  1. Массоваядолярастворенного вещества () – отношение массы растворенного вещества к массе раствора:

Массовая доля выражается в долях единицы либо в процентах. В последнем случае используют формулу:

  1. Молярнаяконцентрация(молярность) (См) – количество молей растворенного вещества в 1 л раствора.

где n– количество вещества, равное отношению массы вещества к молярной массе:

Единица измерения молярной концентрации [Cм] = моль/л.

  1. Моляльнаяконцентрация– количество молей растворенного вещества в 1 кг растворителя.

Единица измерения моляльной концентрации [Cm] = моль/кг.

  1. Титр– масса растворенного вещества (г) в 1 мл раствора.

Единица измерения титра [Т] = г/мл.

  1. Эквивалентная(нормальная)концентрациян) – число молей эквивалентов растворенного вещества в 1 л раствора.

Единица измерения нормальной концентрации [Cн]= моль экв/л.

Эквивалентомвещества называют реальную или условную частицу вещества, которая в данной обменной реакции вступает в реакцию с одним протоном Н+(или сама содержит один протон).

Рассмотрим реакцию нейтрализации:

NaOH+HCl=NaCl+H2O

В этой реакции с одним протоном (т.е. с одной молекулой HCl) реагирует одна молекулаNaOH. Следовательно, эквивалентомNaOHбудет одна молекулаNaOH(реальная частица).

В реакции

Ba(OH)2+ 2HCl=BaCl2+H2O

на одну молекулу HClприходится ½ молекулыBa(OH)2, поэтому эквивалентомBa(OH)2является условная частица, равная половине молекулыBa(OH)2.

Одно и то же вещество может иметь несколько эквивалентов. Определить эквивалент можно, исходя из конкретной химической реакции.

Например, в реакции H2S+NaOH=NaHS+H2Oэквивалентом Н2Sявляется 1 молекулаH2S.

А в реакции H2S+ 2NaOH=Na2S+2H2OэквивалентH2S– ½ молекулыH2S.

Для расчетов необходимо определять молярную массу эквивалентов различных веществ.

Молярная масса эквивалента кислоты(при условии, что в реакции произошла замена всех ионов водорода) будет равна молярной массе кислоты, деленной на основность этой кислоты (т.е. число протонов в молекуле кислоты):

Молярная масса эквивалента основанияравна отношению молярной массы основания к кислотности основания (т.е. числу гидроксильных групп):

Молярная масса эквивалента соли– отношение молярной массы соли к произведению валентности металла и числа ионов металла

Очевидно, что используя понятие эквивалент, вместо понятия молекула, можно рассчитать количество молей эквивалентов как отношение массы вещества к молярной массе эквивалента:

В количественных расчетах используют закон эквивалентов. Его формулировка проста: вещества реагируют в эквивалентных количествах. Это значит, что для двух веществ (1) и (2), вступающих в реакцию, количества молей эквивалентов равны:

(1)

Т.к. Сн=nЭ/V, то можем переписать закон эквивалентов в следующем виде:

(2)

На законе эквивалентов основан титриметрическийметоданализа, который заключается в точном измерении количества реактива, израсходованного на реакцию с определяемым веществом. Если имеется определенный объем раствора вещества (1) неизвестной концентрации Сн1, то, проведя реакцию с веществом (2) (концентрация раствора Сн2известна) и измерив объем раствораV2, можно определить концентрацию Сн1.

Чтобы зафиксировать конец реакции, раствор вещества известной концентрации (его называют титрантом) постепенно, небольшими порциями, добавляют к раствору определяемого вещества. Этот процесс называетсятитрованием. Окончание титрования определяют с помощью индикаторов (обычно применяют фенолфталеин и метиловый оранжевый).

В данной работе проводится определение концентрации раствора соляной кислоты титрованием раствором щелочи NaOH. К определенному объему раствора соляной кислоты неизвестной концентрации постепенно добавляют раствор щелочи (титр его известен) до полной нейтрализации. Конец титрования, т.е. момент нейтральности раствора, устанавливают по изменению окраски фенолфталеина. Этот индикатор бесцветен в кислой и нейтральной средах и окрашен в малиновый цвет в щелочной среде. Объем раствора щелочи, израсходованного на нейтрализацию, определяют с помощью бюретки.

Результатом эксперимента является определение эквивалентной концентрации и титра соляной кислоты.

Выведем формулу связи эквивалентной концентрации и титра.

Получим закон эквивалентов, выраженный через титры реагирующих веществ:

Формула (3) используется для расчета титра соляной кислоты по экспериментальным данным.

Порядок работы:

1. Подготовить колбочку для титрования: промыть ее водопроводной водой, затем ополоснуть дистиллированной.

2. Подготовить к работе бюретки с растворами соляной кислоты и щелочи: из носиков бюреток удалить воздух, уровни растворов установить на нулевые отметки (или на любую отметку ниже нулевой). Избыток раствора из бюретки слить в пробирку. Показания бюреток записать в лабораторный журнал.

3. Получить у преподавателя задание. В колбочку прилить из бюретки заданный объем соляной кислоты и добавить 2 капли раствора фенолфталеина. Показания бюретки записать в лабораторный журнал.

4. Соляную кислоту титровать раствором щелочи. В конце титрования раствор щелочи прибавлять в колбочку по каплям до появления неисчезающего в течение 1-2 минут слабо-розового окрашивания. В ходе титрования жидкость в колбочке осторожно перемешивать круговыми движениями. Записать показание бюретки по окончании титрования.

5. Вычислить объем раствора щелочи по показаниям бюретки до и после титрования. Используя полученное у преподавателя значение титра щелочи, рассчитать титр, молярность и нормальность раствора соляной кислоты.

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ РАСТВОРА КИСЛОТЫ

⇐ ПредыдущаяСтр 7 из 10Следующая ⇒

Цель работы: изучить способы выражения концентрации растворов, научиться рассчитывать концентрацию растворов.

Задание: приготовить приблизительно 0,1 н раствор соляной кислоты и установить нормальность и титр кислоты. Выполнить требования к результатам работы, оформить отчет, решить задачу.

 

Теоретическое введение

Один из методов определения концентрации растворов – объемный анализ. Он сводится к измерению объемов реагирующих веществ, концентрация одного из которых известна.

Такое измерение производится постепенным прибавлением одного раствора к другому до окончания реакции. Этот процесс называется титрованием. Окончание реакции определяется с помощью индикатора.

При определении объемов растворов целесообразно использовать следующие способы выражения концентрации растворов:

Молярная концентрация эквивалентов вещества Вили нормальность( (В) или н) – отношение количества эквивалентов растворенного вещества к объему раствора:

, моль/л,

где nэк(В) – количество эквивалентов вещества В, моль; mB – масса вещества В, г; Мэк(В) – молярная масса эквивалентов вещества В, г/моль; Vр – объем раствора, л.

Массовая доля растворенного вещества ВВ) – отношение (обычно – процентное) массы растворенного вещества к массе раствора:

,

где mB – масса вещества В, г; mр – масса раствора, г.

Если выражать массу раствора через его плотность (ρ) и объем (Vр), то

Титр раствора вещества ВВ) показывает массу растворенного вещества, содержащегося в 1 мл (см3) раствора:

, г/мл,

где mB – масса растворенного вещества В, г; Vp – объем раствора, мл.

Титр также можно рассчитать по формуле:

, г/мл,

где Мэк(В) – молярная масса эквивалентов вещества В, г/моль; (В) – молярная концентрация эквивалентов, моль/л.

 

Выполнение работы

Опыт 1. Приготовление приблизительно 0,1 н раствора соляной кислоты

Налить (под тягой) в цилиндр концентрированный раствор соляной кислоты и ареометром определить его плотность. По измеренной плотности по таблице 1 найти массовую долю (%) кислоты в растворе. Рассчитать массу кислоты, необходимую для приготовления 250 мл 0,1 н раствора HCl по формуле:

, откуда m = сэк · Мэк(HCl) · V,

где m – масса кислоты, г; Мэк(HCl) – молярная масса эквивалентов кислоты, г/моль; сэк – молярная концентрация эквивалентов, моль/л; V – объем кислоты, л.

Полученную величину (m) пересчитать на объем, который требуется для приготовления 250 мл 0,1 н раствора кислоты по формуле:

, откуда V = ,

где V – объем кислоты, мл; m – масса кислоты,г; ω – массовая доля в % HCl, найденная по таблице 1; ρ – плотность кислоты, г/см3, измеренная ареометром.

Пипеткой отобрать рассчитанный объем раствора кислоты, перенести его в мерную колбу, разбавить водой до метки и хорошо перемешать.

 

Опыт 2. Установление нормальности и титра кислоты

Отмерить пипеткой 10 мл приготовленного раствора кислоты, перенести его в коническую колбу, добавить 1-2 капли фенолфталеина.

В бюретку налить 0,1 н раствор NaOH. Оттитровать раствор кислоты. Для этого медленно приливать из бюретки щелочь в колбу с раствором кислоты, непрерывно перемешивая его в процессе титрования. Место, в которое падают капли щелочи, окрашивается в розовый цвет, исчезающий при взбалтывании. Титрование проводить до тех пор, пока от одной капли щелочи раствор примет неисчезающую окраску. Титрование повторить. Результаты не должны отличаться более чем на 0,1 мл.

Требования к результату опыта:

Данные опыта занести в таблицу:

 

№ п/п V (HCl) (объем кислоты) V (NaOH) (объем щелочи) Vср (NaOH) (среднее значение объема щелочи)
     
   
   

Вычислить:

1. Молярную концентрацию эквивалентов раствора кислоты по закону эквивалентов:

сэк (HCl)∙V(HCl) = сэк (NaOH)∙V(NaOH), откуда

 

, моль/л

где сэк (HCl) и сэк (NaOH) – молярные концентрации эквивалентов растворов; V(HCl) и V(NaOH) – объемы реагирующих растворов.

2. Титр раствора НСl по формуле:

, г/мл

Таблица 1.

Плотность раствора соляной кислоты

Плотность ρ, г/см3 Массовая доля кислоты, %
1,100 20,01
1,105 20,97
1,110 21,92
1,115 22,86
1,120 23,82
1,125 24,78
1,130 25,75
1,135 26,70
1,140 27,66
1,145 28,61
1,150 29,57
1,155 30,55
1,160 31,52
1,165 32,49
1,170 33,46
1,175 34,42
1,180 35,39
1,185 36,31
1,190 37,23
1,195 38,16
1,200 39,11

 

Примеры решения задач

В химической практике наиболее употребительны следующие способы выражения концентрации растворов:

Молярная концентрация вещества ВилимолярностьВ или М) – отношение количества растворенного вещества к объему раствора:

, моль/л, (1)

где nB – количество вещества В, моль; mB – масса вещества В, г; МВ – молярная масса вещества В, г/моль; Vр – объем раствора, л.

Молярная концентрация эквивалентов вещества Вили нормальность( (В) или н) – отношение количества эквивалентов растворенного вещества к объему раствора:

, моль/л, (2)

где nэк(В) – количество эквивалентов вещества В, моль; mB – масса вещества В, г; Мэк(В) – молярная масса эквивалентов вещества В, г/моль; Vр – объем раствора, л.

Моляльная концентрация вещества Вили моляльностьm(B)) – отношение количества растворенного вещества к массе растворителя:

, моль/кг, (3)

где nВ – количество вещества В, моль; mB – масса вещества В,г; mS – масса растворителя, г; МВ - молярная масса вещества В, г/моль.

Массовая доля растворенного вещества ВВ) – отношение (обычно – процентное) массы растворенного вещества к массе раствора:

, (4)

где mB – масса вещества В, г; mр – масса раствора, г.

Если выражать массу раствора через его плотность (ρ) и объем (Vр), то

(5)

Молярная (мольная) доля вещества В(хВ, безразмерная величина ) ─ отношение количества данного вещества к суммарному количеству всех веществ, составляющих раствор, включая растворитель.

Если раствор состоит из одного растворенного вещества и растворителя, то молярная доля вещества (хВ) равна:

, (6)

а молярная доля растворителя (хs):

, (7)

где nB – количество растворенного вещества, моль; nS – количество вещества растворителя, моль.

Сумма молярных долей всех веществ раствора равна единице.

Титр раствора вещества ВВ) показывает массу растворенного вещества, содержащегося в 1 мл (см3) раствора:

, г/мл, (8)

где mB – масса растворенного вещества В, г; Vp – объем раствора, мл.

Титр также можно рассчитать по формулам:

, г/мл, (9)

где Мэк(В) – молярная масса эквивалентов вещества В, г/моль; (В) – молярная концентрация эквивалентов, моль/л;

, г/мл, (10)

где ωВ – массовая доля вещества В; ρ – плотность раствора, г/см3.

Пример 5.1. Водный раствор содержит 354 г H3PO4 в 1 л. Плотность раствора ρ = 1,18 г/мл. Вычислить: а) массовую долю (%) H3PO4 в растворе;

б) молярную концентрацию; в) молярную концентрацию эквивалентов;

г) моляльность; д) титр; е) молярные доли H3PO4 и Н2О.

Решение. а) Для расчета массовой доли воспользуемся формулой (5):

%

б) Молярная масса H3PO4 равна 98 г/моль. Молярную концентрацию раствора находим из соотношения (1):

= 3,61 моль/л.

в) Молярная масса эквивалентов H3PO4 равна 32,7 г/моль. Молярную концентрацию эквивалентов рассчитываем по формуле (2):

= 10,83 моль/л.

г) Для определения моляльности по формуле (3) необходимо рассчитать массу растворителя в растворе. Масса раствора составляет 1,18 ∙ 1000 = 1180 г.

Масса растворителя в растворе mS = 1180 – 354 = 826 г.

Моляльная концентрация раствора равна:

4,37 моль/кг

д) Титр раствора можно рассчитать по формулам (8), (9), (10):

= 0,354 г/мл,

0,354 г/мл,

0,354 г/мл.

е) В 1 л раствора содержится 3,61 моль H3PO4 (см. пункт б).

Масса растворителя в растворе 826 г, что составляет 45,9 моль.

Молярные доли H3PO4 и Н2О рассчитываем по формулам (6) и (7):

0,073;

0,927.

Пример 5.2. Сколько миллилитров 50 %-ного раствора HNO3, плотность которого 1,32 г/мл, требуется для приготовления 5 л 2 %-ного раствора, плотность которого 1,01 г/мл?

Решение. При решении задачи пользуемся формулой (5). Сначала находим массу азотной кислоты в 5 л 2 %-ного раствора:

101 г.

Чтобы ответить на вопрос задачи, надо определить, в каком объеме раствора с массовой долей HNO3 50 % содержится 101 г HNO3:

153 мл

Таким образом, для приготовления 5 л 2 %-ного раствора HNO3 требуется 153 мл 50 %-ного раствора HNO3.

Пример 5.3. На нейтрализацию 50 мл раствора кислоты израсходовано

25 мл 0,5 н раствора щелочи. Чему равна нормальность кислоты?

Решение. Так как вещества взаимодействуют между собой в эквивалентных количествах, то можно написать

VA ∙ cэк(А) = VB ∙ сэк(B)

50 ∙ сэк(кислоты) = 25 ∙ 0,5, отсюда

сэк(кислоты) = 0,25 моль/л

Следовательно, для реакции был использован 0,25 н раствор кислоты.

 

Задачи

5.1. В одном литре раствора содержится 10,6 г карбоната натрия Na2CO3. Рассчитать молярную концентрацию, молярную концентрацию эквивалентов и титр раствора. (Ответ: 0,1 М; 0,2 н; 10,6∙10-3 г/мл)

5.2. Вычислить молярную концентрацию и молярную концентрацию эквивалентов 20 %-ного раствора хлорида кальция плотностью 1,178 г/мл.

(Ответ: 2,1 М; 4,2 н).

5.3. Сколько моль HNO3 содержится в 250 мл раствора с массовой долей кислоты 30 % и плотностью, равной 1,18 г/мл? (Ответ: 1,40 моль).

5.4. Водный раствор содержит 5 г CuSO4 в 45 г воды. Плотность раствора равна 1,107 г/мл. Вычислить массовую долю (%) CuSO4 в растворе, а также моляльность и мольные доли CuSO4 и Н2О.

(Ответ: 9 %; 0,694 моль/кг; 0,012; 0,988).

5.5. Вычислить титры растворов: а) 0,05 М NaCl; б) 0,004 н Ca(OH)2;

в) 30 %-ного КОН, ρ = 1,297 г/мл.

(Ответ: а) 0,00292 г/мл; б) 0,148 ∙ 10‾3 г/мл; в) 0,389 г/мл).

5.6. Чему равна нормальность 30 %-ного раствора NaOH плотностью 1,328 г/мл? К 1 л этого раствора прибавили 5 л воды. Получился раствор плотностью 1,054 г/мл. Вычислить массовую долю (%) NaOH в полученном растворе. (Ответ: 9,96 н; 6,3 %).

5.7. В 1 кг воды растворили 666 г КОН, плотность раствора равна 1,395 г/мл. Вычислить массовую долю КОН в полученном растворе, молярность и мольные доли щелочи и воды. (Ответ: 40 %; 9,96 моль/л; 0,176; 0,824).

5.8. Какой объем 2 М раствора К2СО3 надо взять для приготовления 1 л 0,25 н раствора? (Ответ: 62,5 мл).

5.9. Из 600 г 5 %-ного раствора сульфата меди упариванием удалили 100 г воды. Чему равна массовая доля CuSO4 в оставшемся растворе? (Ответ: 6 %).

5.10. Какой объем 50 %-ного КОН (ρ = 1,538 г/мл) требуется для приготовления 3 л 6 %-ного раствора (ρ = 1,048 г/мл)? (Ответ: 245,3 мл).

5.11. Из 5 л раствора гидроксида калия с массовой долей КОН 50 % и плотностью 1,538 г/мл надо приготовить раствор с массовой долей КОН 18 %. Какой объем воды потребуется? (Ответ: 17,5 л).

5.12. Вычислить моляльную и молярную концентрацию эквивалентов 20,8 %-ного раствора HNO3 плотностью 1,12 г/мл. Сколько граммов кислоты содержится в 4 л этого раствора? (Ответ: 4,17 моль/кг; 3,7 н; 931,84 г).

5.13. Сколько миллилитров 0,2 М раствора Na2CO3 требуется для реакции с 50 мл 0,5 М раствора CaCl2? (Ответ: 125 мл).

5.14. Плотность 15 %-ного раствора Н2SO4 1,105 г/мл. Вычислить молярность, моляльность и молярную концентрацию эквивалентов раствора серной кислоты. (Ответ: 1,69 моль/л; 1,8 моль/кг; 3,38 моль/л).

5.15. Сколько миллилитров раствора соляной кислоты с плотностью 1,195 г/мл, содержащей 38 % HCl, нужно для приготовления 1 л 2 н раствора?

(Ответ: 160,7 мл).

5.16. При растворении 18 г Н3РО4 в 282 мл воды получили раствор фосфорной кислоты, плотность которого 1,031 г/мл. Вычислить молярную, моляльную, молярную концентрацию эквивалентов полученного раствора и его титр. (Ответ: 0,63 М; 0,65 моль/кг; 1,89 н; 0,062 г/мл).

5.17. На нейтрализацию 20 мл раствора, содержащего в 1 л 12 г щелочи, израсходовано 24 мл 0,25 н раствора кислоты. Вычислить молярную массу эквивалентов щелочи. (Ответ: 40 г/моль).

5.18. На нейтрализацию 31 мл 0,16 н раствора щелочи требуется 217 мл раствора H2SO4. Чему равны нормальность и титр раствора H2SO4?

(Ответ: 0,023 н; 1,127∙10‾3 г/мл).

5.19. Смешали 10 мл 10 %-ного раствора HNO3 (ρ = 1,056 г/мл) и 100 мл

30 %-ного раствора HNO3 (ρ = 1,184 г/мл). Вычислить массовую долю HNO3 в полученном растворе. (Ответ: 28,36 %).

5.20. Вычислить массовую долю (%) нитрата серебра в 1,4 М растворе, плотность которого 1,18 г/мл. (Ответ: 20,2 %).

Лабораторная работа 6





Смотрите также

От вздутия живота народные средства

От Вздутия Живота Народные Средства

Народные средства от вздутия живота Вздутие живота или метеоризм характеризуется излишним скоплением газов в кишечнике, которое может вызывать болезненные… Подробнее...
Заболевания вызывающие тошноту, диарею и повышенную температуру тела

Температура Понос Тошнота

Заболевания вызывающие тошноту, диарею и повышенную температуру тела Каждый хоть однажды сталкивался с такими неприятными симптомами, как температура, понос,… Подробнее...
Почему у ребенка зеленый понос

Понос Зеленый У Ребенка

Почему у ребенка зеленый понос Появление у ребенка зеленого поноса часто вводит в панику его родителей. Не зная причину появления поноса зеленого цвета, в… Подробнее...
Какие болезни сопровождаются поносом и рвотой

Температура Понос Рвота У Ребенка

Какие болезни сопровождаются поносом и рвотой У маленького ребенка еще только формируется защитная система организма, и… Подробнее...
Лекарство от вздутия живота

Лекарство От Вздутия Живота

Чем снять вздутие живота Вздутие живота, как его называют врачи, метеоризм, — неприятная, а главное, исключительно… Подробнее...
Причины поноса после еды

После Еды Сразу Иду В Туалет По Большому - Понос

Причины поноса после еды Некоторый жалуются, что после еды сразу идут в туалет по-большому из-за поноса. Такая… Подробнее...
Понос после арбуза

Понос После Арбуза

Какие продукты могут вызвать понос Расстройство пищеварения может возникнуть не только как реакция на отравление, но и… Подробнее...
Первая помощь ребенку при рвоте

Рвота У Ребенка Без Температуры И Поноса Что Делать - 3 Года

Первая помощь ребенку при рвоте Дети до 5 лет являются самой восприимчивой к различным вирусам и бактериям группой.… Подробнее...