Патология липидного обмена


 Нарушения липидного обмена

Липиды — разнородные по химическому составу вещества. В организме человека имеются разнообразные липиды: жирные кислоты, фосфолипиды, холестерин, триглицериды, стероиды и др. Потребность человека в жирах колеблется в диапазоне 80-100 г в сутки.

Функции липидов

• Структурная: Липиды составляют основу клеточных мембран.

• Регуляторная.

† Липиды регулируют проницаемость мембран, их коллоидное состояние и текучесть, активность липидозависимых ферментов (например, аденилат‑ и гуанилатциклаз, Na+,K+‑АТФазы, Ca2+‑АТФазы, цитохромоксидазы), активность мембранных рецепторов (например, для катехоламинов, ацетилхолина, инсулина, цитокинов).

† Отдельные липиды — БАВ (например, Пг, лейкотриены, фактор активации тромбоцитов, стероидные гормоны) — регулируют функции клеток, органов и тканей.

• Энергообеспечивающая. Липиды являются одним из главных источников энергии для поперечнополосатой мускулатуры, печени, почек и дополнительным источником энергии для нервной ткани.

• Защитная. В составе подкожной клетчатки липиды образуют буферный

слой, защищающий мягкие ткани от механических воздействий.

•Изолирующая. Липиды создают термоизолирующую прослойку в поверхностных тканях организма и электроизолирующую оболочку вокруг нервных волокон.

Типовые формы патологии

Типовые формы патологии липидного обмена представлены на рис. 10–1.

Рис. 10–1. Типовые формы патологии липидного обмена.

• В зависимости от уровня нарушений метаболизма липидов выделяют расстройства:

† Переваривания и всасывания липидов в ЖКТ (например, в результате дефицита липаз поджелудочной железы, нарушения желчеобразования и желчевыделения, расстройств полостного и «мембранного» пищеварения).

† Трансмембранного переноса липидов из кишечника в кровь и утилизации их клетками (например, при энтеритах, нарушении кровообращения в стенке тонкого кишечника).

† Метаболизма липидов в тканях (например, при дефекте или недостаточности липаз, фосфолипаз, ЛПЛазы).

• В зависимости от клинических проявлений различают ожирение, истощение, дислипопротеинемии, липодистрофии и липидозы.

Ожирение

Нормальное содержание жировой ткани у мужчин составляет 15–20% массы тела, у женщин — 20–30%.

Ожирение — избыточное (патологическое) накопление жира в организме в виде триглицеридов. При этом масса тела увеличивается более чем на 20–30%.

По данным экспертов ВОЗ, в развитых странах Европы избыточную массу тела имеют от 20 до 60% населения, в России — около 60%.

Само по себе увеличение массы жировой ткани не представляет опасности для организма, хотя и снижает его адаптивные возможности. Однако, ожирение увеличивает риск возникновения ИБС (в 1,5 раза), атеросклероза (в 2 раза), гипертонической болезни (в 3 раза), СД (в 4 раза), а также некоторых новообразований (например, рака молочной железы, эндометрия и простаты).

Виды ожирения

Основные виды ожирения приведена на рис. 10–2.

Рис. 10–2. Виды ожирения. ИМТ — индекс массы тела (см. в тексте).

• В зависимости от степени увеличения массы тела выделяют три степени ожирения. При этом применяют понятие «идеальная масса тела».

Для оценки идеальной массы тела используют различные формулы.

† Наиболее простая — индекс Брока: из показателя роста (в см) вычитают 100.

† Индекс массы тела вычисляют также по следующей формуле:

Масса тела считается нормальной при индексе массы тела в диапазоне 18,5–24,9. При превышении этих значений говорят об избыточной массе тела (табл. 10–1).

Таблица 10–1. Степени ожирения

ИМТ

Степень

Описательная оценка

18,5–24,9

 

Норма

25–29,9

I

Повышенная масса тела («степень зависти окружающих»)

30–39,9

II

Тучность («степень улыбки окружающих»)

>40

III

Болезненная тучность («степень сочувствия окружающих»)

Примечание. ИМТ — индекс массы тела

• По преимущественной локализации жировой ткани различают ожирение общее (равномерное) и местное (локальная липогипертрофия). Разновидности местного ожирения:

† Женский тип (гиноидный) — избыток подкожного жира преимущественно в области бёдер и ягодиц.

† Мужской тип (андроидный) — накопление жира в области живота.

• По преимущественному увеличению числа или размеров жировых клеток выделяют:

† Гиперпластическое ожирение (за счёт преимущественного увеличения числа адипоцитов). Оно более устойчиво к лечению и в тяжёлых случаях требует хирургического вмешательства по удалению избытка жира.

† Гипертрофическое (за счёт преимущественного увеличения массы и размеров адипоцитов). Оно чаще наблюдается после 30 лет.

† Гиперпластическо‑гипертрофическое (смешанное). Нередко выявляется и в детском возрасте.

• По генезу выделяют первичное ожирение и вторичные его формы.

† Первичное (гипоталамическое) ожирение — результат расстройств системы регуляции жирового обмена (липостата) —самостоятельное заболевание нейроэндокринного генеза.

† Вторичное (симптоматическое) ожирение — следствие различных нарушений в организме, обусловливающих:

‡ снижение энергозатрат (и следовательно — расхода триглицеридов жировой ткани),

‡ активацию синтеза липидов — липогенеза (наблюдается при ряде заболеваний, например, при СД, гипотиреозе, гиперкортицизме).

Причины ожирения

• Причина первичного ожирения — нарушение функционирования системы «адипоциты — гипоталамус». Это является результатом дефицита и/или недостаточности эффектов лептина (по подавлению выработки нейронами гипоталамуса нейропептида Y, который повышает аппетит и чувство голода).

• Вторичное ожирение развивается при избыточной калорийности пищи и пониженном уровне энергозатрат организма. Энергозатраты зависят от степени активности (прежде всего физической) и образа жизни человека. Недостаточная физическая активность является одной из важных причин ожирения.

Патогенез ожирения

Выделяют нейрогенные, эндокринные и метаболические механизмы возникновения ожирения.

• Нейрогенные варианты ожирения

Нейрогенные (центрогенный и гипоталамический) механизмы ожирения представлены на рис. 10–3.

Рис. 10–3. Нейрогенные механизмы ожирения.

Центрогенный (корковый, психогенный) механизм — один из вариантов расстройства пищевого поведения (два других: неврогенная анорексия и булимия). Причина: различные расстройства психики, проявляющиеся постоянным, иногда непреодолимым стремлением к приёму пищи. Возможные механизмы:

‡ активация серотонинергической, дофаминергической, опиоидергической и других систем, участвующих в формировании ощущений удовольствия и комфорта;

‡ восприятие пищи как сильного положительного стимула (допинга), что ещё более активирует указанные системы — замыкается порочный круг центрогенного механизма развития ожирения.

Гипоталамический (диэнцефальный, подкорковый) механизм. Его причина — повреждение нейронов вентромедиального и паравентрикулярного ядер гипоталамуса (например, после сотрясения мозга, при энцефалитах, краниофарингиоме, метастазах опухолей в гипоталамус). Наиболее важные звенья патогенеза:

‡ Спонтанное (без выясненной причины) повышение синтеза и секреции нейропептида Y нейронами заднелатерального вентрального ядра гипоталамуса.

‡ Повреждение или раздражение нейронов вышеназванного ядра также стимулирует синтез и секрецию нейропептида Y и снижает чувствительность к факторам, ингибирующим синтез нейропептида Y (главным образом — к лептину).

§ Нейропептид Y стимулирует чувство голода и повышает аппетит.

§ Лептин подавляет образование стимулятора аппетита — нейропептида Y.

‡ Нарушение участия гипоталамуса в формировании чувства голода. Это чувство формируется при снижении ГПК, сокращении мышц желудка при эвакуации пищи и его опорожнении (чувство пищевого дискомфорта — «сосёт под ложечкой»). Информация от периферических чувствительных нервных окончаний интегрируется в нервных ядрах гипоталамуса, ответственных за пищевое поведение.

‡ В результате вышеназванных процессов усиливается выработка нейромедиаторов и нейропептидов, формирующих чувство голода и повышающих аппетит (ГАМК, дофамина, -эндорфина, энкефалинов) и/или нейромедиаторов и нейропептидов, формирующих чувство сытости и угнетающих пищевое поведение (серотонина, норадреналина, холецистокинина, соматостатина).

• Эндокринные варианты ожирения

Эндокринные механизмы ожирения — лептиновый, гипотиреоидный, надпочечниковый и инсулиновый — представлены на рис. 10–4.

Рис. 10–4. Патогенез ожирения.

Лептиновый механизм — ведущий в развитии первичного ожирения.

Лептин образуется в жировых клетках. Он уменьшает аппетит и повышает расход энергии организмом. Уровень лептина в крови прямо коррелирует с количеством белой жировой ткани. Рецепторы к лептину имеют многие клетки, в том числе — нейроны вентромедиального ядра гипоталамуса. Лептин подавляет образование и выделение гипоталамусом нейропептида Y.

Нейропептид Y формирует чувство голода, повышает аппетит, снижает энергорасходы организма. Между гипоталамусом и жировой тканью существует своего рода отрицательная обратная связь: избыточное потребление пищи, сопровождающееся увеличением массы жировой ткани, приводит к усилению секреции лептина. Это (посредством торможения выработки нейропептида Y) ослабляет чувство голода. Однако, у тучных людей этот регуляторный механизм может быть нарушен, например, из‑за повышенной резистентности к лептину или мутации гена лептина.

Липостат. Контур «лептин‑нейропептид Y» обеспечивает поддержание массы жировой ткани тела — липостата (или установочной точки организма в отношении интенсивности энергетического обмена). Помимо лептина, в систему липостата включены инсулин, катехоламины, серотонин, холецистокинин, эндорфины.

Гипотиреоидный механизм ожирения является результатом недостаточности эффектов йодсодержащих гормонов щитовидной железы. Это снижает интенсивность липолиза, скорость обменных процессов в тканях и энергетические затраты организма.

Надпочечниковый (глюкокортикоидный, кортизоловый) механизм ожирения активируется вследствие гиперпродукции глюкокортикоидов в коре надпочечников (например, при болезни или синдроме ИценкоКушинга). Под влиянием избытка глюкокортикоидов активизируется глюконеогенез (в связи с этим развивается гипергликемия), транспорт глюкозы в адипоциты, и гликолиз (происходит торможение липолитических реакций и накопление триглицеридов).

Инсулиновый механизм развития ожирения развивается вследствие прямой активации инсулином липогенеза в жировой ткани.

Другие механизмы. Ожирение может развиваться также при других эндокринопатиях (например, при дефиците СТГ и гонадотрофных гормонов). Механизмы развития ожирения при этих состояниях описаны в главе 27 «Эндокринопатии»).

• Метаболические механизмы ожирения

† Запасы углеводов в организме относительно малы. Они примерно равны их суточному приёму с пищей. В связи с этим выработался механизм экономии углеводов.

† При повышении в рационе доли жиров скорость окисления углеводов снижается. Об этом свидетельствует соответствующее уменьшение дыхательного коэффициента (отношение скорости образования CO2 к скорости потребления O2).

† Если этого не происходит (при расстройстве механизма ингибирования гликогенолиза в условиях высокой концентрации жиров в крови), активируется механизм, обеспечивающий повышение аппетита и увеличение приёма пищи, направленное на обеспечение необходимого количества в организме углеводов.

† В этих условиях жиры накапливаются в виде триглицеридов. Развивается ожирение.

7.17. Патология липидного обмена

Нарушения обмена липидов возможны на этапе их переваривания, транспорта, тканевого обмена.

Переваривание липидов нарушается при заболеваниях поджелудочной железы (недостаток ферментов), печени и жёлчевыводящих путей (отсутствуют жёлчные кислоты, страдает эмульгирование, всасывание). При нарушении переваривания и всасывания липидов развиваются авитаминозы жирорастворимых витаминов, истощаются жировые депо, возникает дефицит липидов в организме как основного резервного энергетического материала. Наблюдается потеря липидов через кишечник – стеаторея.

Нарушение транспорта липидов связано с нарушением обмена липопротеидов крови. Примерами врождённых нарушений являются β-алипопротеинемия (болезнь Танжера),α-алипопротеинемия, семейная гиперхолестеринемия. Гораздо чаще встречается приобретённыедислипопротеинемии,при которых изменено соотношение между липидами в различных липопротеидах, в частности,гиперлипопротеинемии– повышение уровня каких либо видов липидов крови.

Нарушение тканевого обмена липидов часто сочетается с нарушением углеводного обмена (голодание, ожирение, сахарный диабет), что может вести к накоплению в тканях, крови ацетоновых тел.

При голоданииснижается выработка инсулина, активируется образование глюкагона и адреналина. В результате усиливается распад липидов в тканях и их окисление в качестве основного энергетического материала. Распад липидов приводит к образованию большого количества ацетил - КоА, который при голодании не может быть использован на синтез жирных кислот, холестерина, не может окисляться в цикле Кребса (в силу дефицита щавелевоуксусной кислоты и НАДФН2). Избыток ацетил - КоА используется на синтез ацетоновых тел, поэтому длительное голодание сопровождается выделением ацетоновых тел с мочой.

При сахарном диабетедефицит инсулина сопровождается нарушением усвоения глюкозы тканями, активацией липолиза, образования ацетил - КоА и, как следствие, повышенным образованием ацетоновых тел.

Ожирениеможет возникать в силу нарушения характера питания (алиментарное ожирение), при эндокринных заболеваниях, длительном применении некоторых лекарственных препаратов. Возможен генетический вариант ожирения, связанный со сбоями в работе гена ожирения, который регулирует синтез гормонов лептинов, активирующих липолиз. При алиментарном ожирении выражена стадийность изменений обмена веществ в организме. В начале патологического состояния активируется выработка инсулина, а в последующем инсулярный аппарат истощается, и возникает относительное преобладание контринсулярных гормонов глюкокортикоидов, развивается своеобразное состояние стероидного диабета, проявляющегося ожирением и повышенным синтезом ацетоновых тел.

Жировая дистрофия миокарда, печени может развиваться после миокардита, гепатита в силу увеличения отложения ТАГ в миокардиоцитах и гепатоцитах. Для профилактики жирового перерождения тканей показано применение различных липотропных веществ, способствующих синтезу структурных глицерофосфолипидов.

В последние годы накапливаются данные о митохондриальных болезнях, при которых страдает β-окисление жирных кислот и нарушается энергетический обмен в тканях.

Патология липидного обмена Атеросклероз

Это патология, которая характеризуется отложением, главным образом, холестерина в стенке крупных сосудов (аорта, коронарные сосуды, сосуды мозга и т.д.) с образованием вначале пятен, полосок. Затем на их месте образуются утолщения (атеросклеротические бляшки). Эти липидные бляшки являются своеобразным инородным телом, вокруг которого развивается соединительная ткань, затем наступает кальцификация пораженного участка сосуда. Сосуды становятся неэластичными, плотными, ухудшается кровоснабжение ткани, а на месте бляшек могут возникать тромбы. В стенке сосудов есть два защитных механизма от избыточного отложения холестерина:

1. Работа липопротеинлипазы, которая расщепляет жир липопро-теидов, делает их меньше по размеру;

  1. ЛПВП, которые уносят холестерин.

Биохимические причины атеросклероза

  1. Увеличение атерогенных липопротеидов (ЛПОНП и ЛПНП).

  2. Снижение ЛПВП.

  3. Снижение активности липопротеинлипазы, в результате которого липопротеиды не расщепляются и накапливаются в сосуде.

  4. Снижение количества рецепторов к ЛПНП. Эти рецепторы находятся в основном в печени. Когда их мало, ЛПНП не захватываются печенью и остаются в кровотоке.

Факторы риска для развития атеросклероза

1. Курение.

2. Стресс.

3. Переедание (пища, богатая насыщенными жирными кислотами и углеводами).

4. Эндокринные факторы:

  • гипотиреоз;

  • сахарный диабет;

  • андрогены;

  • климакс;

  • гиперфункция гипофиза;

  • гиперфункция надпочечников.

5. Хронические гипоксии.

6. Гиподинамия.

7. Семейно-наследственные факторы.

Степень развития атеросклероза можно оценить по коэффициенту атерогенности:

общий холестерин – холестеринЛПВП

холестерин ЛПВП

У здоровых людей это соотношение не должно превышать 3. Если выше – имеется риск ИБС.

Ожирение

У нормально упитанного человека жиры составляют около 15% массы тела. При сбалансированном питании количество жира в организме не изменяется. При этом жиры жировой ткани все время обновляются, то есть одновременно идут липолиз и липогенез с равными скоростями. В результате жиры жировой ткани за несколько дней обновляются полностью. При длительном голодании и физических нагрузках липолиз идет с большей скоростью, чем липогенез. В результате количество депонированного жира уменьшается. Если липогенез опережает липолиз, наступает ожирение. Наиболее частой причиной ожирения является несоответствие между количеством потребляемой пищи и энергетическими тратами организма. Такое несоответствие возникает при переедании (особенно углеводов, так как они легко переходят в жиры), при гиподинамии (при этом мобилизация жира идет с более низкой скоростью) и, особенно, при сочетании этих факторов. Кроме того, ожирение является характерным признаком многих эндокринных заболеваний. Люди, страдающие ожирением, в 7 раз чаще болеют диабетом, атеросклерозом, гипертонией и желчнокаменной болезнью.

Липидозы

Липидозы – это наследственные заболевания, связанные с отсутствием генов, отвечающих за синтез ферментов, расщепляющих сложные липиды.

Болезнь Гоше (цереброзидоз)

Нет фермента, расщепляющего глюкоцереброзид. В результате в лизосомах печени, селезенки и костного мозга накапливаются глюкоцереброзиды.

Болезнь Нимана-Пика

При этой болезни в лизосомах печени и селезенки накапливаются лецитины и сфингомиелины. У детей наблюдается умственная отсталость и ранняя смерть.

Болезнь Тей-Сакса

Накапливаются ганглиозиды в мозге, меньше в других тканях.

2. План изучения темы

2.1. Исходный уровень знаний

1. Липиды. Химическая и биологическая классификация липидов.

2. Характеристика этапов катаболизма жира.

3. Эмульгирование жира. Поверхностно активные вещества.

4. Гидролазы.

2.2. Вопросы для самостоятельной подготовки к занятию

- Липиды. Классификация.

- Строение и физико-химические свойства жира.

- Эмульгирование жира.

- Гидролазы.

- Функции липидов.

- Переваривание и всасывание липидов. Особенности переваривания липидов у детей.

- Ресинтез жира. Значение.

- Хиломикроны. Строение. Значение. Метаболизм.

- Жировые депо.

- Липолиз. Ход реакций. Регуляция.

- Липогенез. Ход реакций. Регуляция

- Окисление жирных кислот. Ход реакций. Регуляция.

- Синтез жирных кислот. Ход реакций. Регуляция.

- Обмен глицерина.

- Источники и пути использования ацетил-КоА.

- Кетоновые тела. Синтез. Значение. Регуляция.

- Кетоз. Причины кетоза. Значение.

- Холестерин. Строение. Значение.

- Синтез холестерина. Регуляция.

- Липопротеиды крови. Классификация. Значение липопротеидов в зависимости от возраста.

- Источники и пути использования НЭЖК.

- Атеросклероз. Значение холестерина в развитии атеросклероза. Факторы риска для развития атеросклероза.

- Ожирение.

- Наследственные патологии липидного обмена.

- Холестерин. Строение. Значение.

- Синтез холестерина. Регуляция.

- Липопротеиды крови. Классификация. Значение липопротеидов в зависимости от возраста.

- Источники и пути использования НЭЖК.

- Атеросклероз. Значение холестерина в развитии атеросклероза. Факторы риска для развития атеросклероза.

- Ожирение.

- Наследственные патологии липидного обмена.

Наследственные болезни обмена липидов

Наследственные болезни обмена липидов - обширная группа заболеваний, возникающих в результате нарушения одной из стадий синтеза, транспорта и деградации липопротеинов, в состав которых входят все основные плазменные липиды — триглицериды (ТГ), фосфолипиды, холестерол (ХС) и свободные жирные кислоты. Липиды плазмы крови наиболее часто находятся в соединении с различными апопротеинами, образуя липопротеины. К настоящему времени лучше всего изучены 8 основных апопротеинов - Аро-А 1,2,4, Аро-В, Аро-С 1,2,3 и Аро-Е. Некоторые апопротеины являются составной частью определенных липопротеинов, другие же могут мигрировать от одного липопротеина к другому.

Существует четыре основных класса липопротеинов плазмы крови:

1) хиломикроны (ХМ) - образуются в клетках слизистой оболочки кишечника и являются носителями пищевых ТГ;

2) липопротеины очень низкой плотности (ЛПОНП) — образуются в печени и используются для экспорта ТГ в другие ткани;

3) липопротеины низкой плотности (ЛПНП) - являются конечными продуктами катаболизма ЛПОНП и переносчиками ХС в клетки;

4) липопротеины высокой плотности (ЛПВП) - осуществляют метаболизм ХМ и ЛПОНП и транспортируют ХС из клеточных мембран в печень.

Типичный липопротеин состоит из липидного ядра, образованного триглицеридами и эфирами холестерола и наружного слоя, представленного фосфолипидами, холестеролом и апопротеинами.

Нормальный метаболизм липидов происходит следующим образом. Синтезированные в кишечнике ХМ и в печени ЛПОНП попадают в кровеносное русло и переносят ТГ (триглицериды) в жировые клетки и другие ткани. После отделения ТГ в жировых клетках, ХМ вновь поступают в печень, а ЛПОНП превращаются в ЛПНП, обогащенные ХС и содержащие Аро-В и Аро-Е. ЛПНП сохраняются в кровеносном русле в течение 2,5 суток и служат транспортерами ХС в различные клетки. Поступление ХС в клетки осуществляется при помощи рецепторов ЛПНП, количество и функции которых находятся под генетическим контролем. Клеточные рецепторы группируются в специальных участках клеточной мембраны, погруженных виде кратера в цитоплазму. После взаимодействия рецептора с ЛПНП участок мембраны, содержащий рецепторы, втягивается внутрь клетки и образует окаймленную везикулу. В цитоплазме ЛПНП отделяются от рецептора и проникают в лизосомы, а рецепторы возвращаются на клеточную мембрану. Освобождение ХС из ЛПНП осуществляется под действием нескольких ферментов. Обратная доставка ХС в клетки печени и тонкого кишечника осуществляется ЛПВП также с использованием механизма рецепторного эндоцитоза.

К настоящему времени описано более 420 различных мутаций, которые в зависимости от воздействия можно сгруппировать в 5 классов:

1) приводящие к прекращению синтеза рецептора;

2) нарушающие миграцию рецептора из эндоплазматического ретикулума в аппарат Гольджи;

3) изменяющие процесс связывания рецептора с ЛПНП;

4) нарушающие кластеризацию рецептора на клеточной мембран;

5) нарушающие процесс отщепления ЛПНП в клетке и транспорт рецептора к мембране клетки.

Основные этапы обмена ХС в организме находятся под сложным генетическим контролем. Нарушение в результате мутаций различных этапов этого метаболического пути может привести к задержке выведения ХС из организма и возникновению различных вариантов гиперлипидемий, развитию атеросклероза сосудов сердца и мозга. В последние годы удалось расшифровать молекулярно-генетические механизмы некоторых моногенных болезней, обусловленных нарушением обмена липидов.

Липоидозы - большая группа наследственных аномалий липидного обмена, общей чертой которых является высокий уровень липидов в плазме крови (плазматические липоидозы) либо накопление метаболитов липидного обмена внутри клеток (внутриклеточные липоидозы). К липоидозам относят болезни обмена липопротеидов. Наиболее распространенными формами липоидозов являются болезни Гоше и Ниманна-Пика, Тей-Сакса, относящиеся к так называемым "болезням накопления", клиническая дифференцировка которых крайне трудна.

Болезнь Гоше относится к сфинголипидозам - болезням накопления липидов; обусловлена дефектом гена, ответственного за синтез лизосомального гидролитического фермента бета - глюкоцереброзидазы (бета - гликозидазы).

Заболевание наследуется по аутосомно-рецессивному типу.

Дефект и дефицит этого фермента ведут к нарушению утилизации липидов - глюкоцереброзидов и накоплению их в макрофагах преимущественно костного мозга, селезенки, печени. Диагноз устанавливают по обнаружению специфических клеток Гоше (лимфоцитоподобное ядро, эксцентрично расположенное, и очень широкая светлая цитоплазма с чуть приметной циркулярной исчерченностью) в пунктате селезенки (пункцию ее можно делать только в стационаре) или в костном мозге.

Выделяют три типа болезни Гоше. Тип 1 (доброкачественный) – взрослый тип. В 30 раз чаще встречается у евреев (западноевропейской группы Ашкенази). Неврологические нарушения при этом отсутствуют, висцеральные изменения связаны преимущественно с кроветворными органами, увеличением селезенки, явлениями гиперспленизма, деструкцией костной ткани.

Тип 2 – инфантильный. Представляет собой злокачественную форму процесса с грубыми неврологическими нарушениями, которые проявляются уже у новорожденных и ведут к смерти в первые 2 года жизни.

Тип 3 – ювенильный. Отличается вариабельностью висцеральных и неврологических нарушений; по течению он менее злокачествен, чем тип 2. Разнообразие форм болезни Гоше обусловлено гетерогенностью мутаций гена бета - гликозидазы.

Бозень Нимана - Пика (сфингомиелиноз). Относится к группе тезауризмозов (болезней накопления) и характеризуется тяжелым поражением нервной системы, задержкой общего развития ребенка.

Наследование болезни происходит по аутосомно-рецессивному типу. Мальчики и девочки болеют одинаково часто. Нередко отмечается кровное родство между родителями, имеются семейные случаи болезни Нимана — Пика.

Патогенез болезни связывается с нарушением синтеза сфингомиелина, в составе которого отмечается избыточное количество одних жирных кислот и недостаток других. Возможно, определенное значение имеют нарушения процессов распада сфингомиелина, что приводит к его избыточному накоплению в ретикуло-эндотелиальных клетках различных органов и тканей. Микроскопически в селезенке, печени, почках, надпочечниках, лимфатических узлах, костном мозге и некоторых других органах обнаруживаются клетки Пика. Это довольно крупные клетки, имеющие размер от 20 до 50 мк и содержащие одно или много ядер. Протоплазма клеток содержит вакуоли, придающие клеткам характерный пенистый вид. Пенистость клеток образуется вследствие растворения липидных субстанций при фиксировании препарата. Гистологические изменения обнаруживаются в ганглиозных клетках головного мозга и сетчатой оболочки глаза. Количество сфингомиелина в различных органах резко увеличивается. В 1961 году, была предложена следующая классификация заболевания:

  - болезнь Ниманна-Пика, тип А: классическая инфантильная;

  - болезнь Ниманна-Пика, тип В: висцеральная;

  - болезнь Ниманна-Пика, тип С: неострая подростковая

  - болезнь Ниманна-Пика, тип D: ново-шотландская;

Однако, на сегодня, когда понятна генетическая природа заболевания, расстройство классифицируется следующим образом:

 - болезнь Ниманна-Пика, связанная с геном SMPD1, которая включает в себя типы А и В;

 - болезнь Ниманна-Пика, типа C, который включает в себя типы C1 и C2. (Тип D возникает в результате мутации того же гена, что и тип C1).

Клинически болезнь Нимана — Пика проявляется обычно в грудном возрасте, чаще в первое полугодие. Имеются единичные описания возникновения клинических признаков болезни в более старшем детском и даже молодом возрасте. Начальными симптомами болезни являются потеря аппетита, резкое похудание ребенка, задержка психофизического развития. Живот больного значительно увеличивается вследствие гепатоспленомегалии (увеличение селезенки и печени). Часто возникают бронхопневмонии. Лимфатические железы в большинстве случаев увеличиваются. Кожные покровы выглядят восковидными, блестящими, обнаруживаются участки пигментации. Неврологически в начальных стадиях болезни выявляются двигательные расстройства центрального характера: парезы конечностей, повышение тонуса мышц и сухожильных рефлексов, пирамидные знаки. В более поздних стадиях характерна гипотония мышц, отсутствие сухожильных рефлексов. Развивается идиотия, слепота и глухота. На глазном дне у многих больных могут обнаруживаться атрофия сосков зрительного нерва, вишнево-красное пятнышко овальной формы в макулярной области. Болезнь Нимана — Пика обладает злокачественным течением. Большинство детей погибают в первые 2 года жизни от легочно-сердечной недостаточности, интеркуррентных инфекций.

Болезнь Тея-Сакса - наследственное нейрометаболическое заболевание, связанное с накоплением в головном мозге ганглиозида GM2. Ганглиозиды содержат один или более остатков сиаловой кислоты.

Аутосомно-рецессивный тип наследования. Болезнь Тея-Сакса обусловлена мутационными поражениями гена гексозаминидазы (HEXA), контролирующего синтез альфа субъединицы гексозаминидазы А. Гексозаминидаза А - лизосомный фермент, катализирующий катаболизм GM2 ганглиозида.

Различают три формы болезни Тея — Сакса:

Детская форма — через полгода после рождения у детей отмечается прогрессирующее ухудшение физических возможностей и умственных способностей: наблюдаются слепота, глухота, потеря способности глотать. В результате  атрофии мышц развивается паралич. Смерть наступает в возрасте до 3—4 лет.

Подростковая форма — развиваются моторно-когнитивные проблемы, дисфагия (нарушение глотания) дизартрия, (расстройства речи),  атаксия (шаткость походки), спастичность (контрактуры и параличи). Смерть наступает в возрасте до 15—16 лет.

Взрослая форма — возникает в возрасте от 25 до 30 лет. Характеризуется симптомами прогрессирующего ухудшения неврологических функций: нарушение и шаткость походки, расстройства глотания и речи, снижение когнитивных навыков, спастичность, развитие шизофрении в форме психоза.

  Болезнь Фабри является редкой наследственной Х-сцепленной рецессивной лизосомальной болезнью накопления. Дефицит фермента альфа-галактозидазы А, который возникает из-за мутации, вызывает накопление гликолипида известного как глоботриаосилцерамид (сокращенно GB3, GL-3) в кровеносных сосудах, других тканях и органах. Такое накопление приводит к нарушению их нормального функционирования.

Боль во всем теле или локализованные боли в конечностях (известный как акропарестезия) или желудочно-кишечном тракте (ЖКТ) является характерным явлением для пациентов с болезнью Фабри. Считается, что акропарестезия при заболевании связана с повреждением периферических нервных волокон, передающих боль. Боль в желудочно-кишечном тракте, вероятно, обусловлена накоплением липидов в малых его сосудах, что в свою очередь, мешает кровообращению (ишемия кишечника), вызывая боль. Распространенным и серьезным следствием болезни являются осложнения, связанные с почками. Почечная недостаточность (уремия) может ухудшаться со временем. Протеинурия (которая может вызвать пенистость мочи) часто является первым признаком поражения почек. Конечная стадия почечной недостаточности у мужчин, как правило, наступает в 30-40 летнем возрасте, и является частой причиной смерти. Ангиокератомы (маленькие, безболезненные папулы, которые могут появляться на любой части тела, но обычно появляются на бедрах, вокруг пупка, ягодицах, нижней части живота и в паху) тоже является распространенным симптомом. Ангидроз (отсутствие потоотделения) является распространенным симптомом в отличие от гипергидроза (повышенная потливость), который встречается значительно реже. При заболевании характерны также поражение глаз, а именно помутнение роговицы (известное как кератопатия).

Наследственный дефицит печеночной липазы,или гипер-a-триглицеридемия, характеризуется накоплением ТГ во фракции a-ЛП. В результате торможения катализируемых печеночной липазой реакций в крови. Проявления: липоидная дуга роговицы, ксантомы, ладонные стрии, ИБС.

Гиперлипидемия - повышение уровня липидов в крови или тканях, обусловленное врожденным или приобретенными нарушением обмена веществ.

Генетические факторы взаимодействуют с факторами окружающей среды, включающими образ питания и прием лекарств. Наследственные компоненты часто являются полигенными, и плохо поддаются определению, но тем не менее описано три чисто наследственных нарушения - семейная гиперхолестеринемия (СГХК), семейная гиперлипопротеинемия III типа и семейная комбинированная гиперлипидемия.

Различают пять типов гиперлипопротеинемий с характерными для каждого типа специфическими симптомами:

Тип I характеризуется приступами боли в желудке, обычно после употребления жирной пищи, а также общим ухудшением самочувствия, потерей аппетита и повышением температуры.

Тип II характеризуется появлением плотных образований на ахилловых сухожилиях и сухожилиях кистей рук и стоп

Тип III может вызывать появление над локтями и коленями мягких воспаленных язвочек. Тип IV обусловлен перееданием, ожирением и диабетом.

Тип V проявляется болями в животе (самый распространенный симптом), желтыми узелками на коже и красновато-беловатыми сосудиками на сетчатке глаз

Наследственная гиперхолестеринемия – аутосомно-доминантное, моногенное заболевание, причиной развития которого является нарушение структуры или функции рецепторов к липопротеинам низкой плотности (ЛПНП) на соматических клетках (печёночных и других) и/или их количества [5,13] (классическая форма НГХС [5]), или нарушения в структуре молекулы аполипопротеинов В-100 и С (апо В-100 и С, белковых компонентов липопротеинов).

В зависимости от природы генетического дефекта это заболевание классифицируется как рецептор-негативная, рецептор-дефективная или рецептор-интернационализационная формы.

Основными нарушениями являются нарушенный катаболизм ЛПНП печенью и другими тканями через ЛПНП-рецепторы, которые связываются с Apo В. При патологии ЛПНП-рецепторов это вызывает повышение уровня ЛПНП в крови и увеличение времени циркуляции данного вида липопротеинов, что в конце концов ведёт к образованию изменённых, модифицированных форм ЛПНП, обладающих высокой атерогенностью. Гомозиготные формы НГХС отличаются от гетерозиготных полным отсутствием ЛПНП-рецепторов на поверхности клеток и удаления ЛПНП из кровотока данным путём, и более длительной циркуляцией их периферическом кровяном русле в результате данных изменений (захват ЛПНП клетками происходит нерецепторным способом), тогда как при гетерозиготных формах число рецепторов снижено примерно на половину.

На коже больных НГХС отмечаются патогноматические признаки нарушения липидного обмена: ксантомы и ксантелазмы (отложение эфиров ХС в толще кожи). 

Глава 11 нарушения липидного обмена. Атеросклероз

Патологические изменения в обмене жиров (липидов) возникают в результате нарушения всасывания и выделения жиров; нарушения транспорта жиров в ткани; избыточного накопления жиров в органах, не относящихся к жировой ткани; нарушения промежуточного жирового обмена; нарушения жирового обмена в жировой ткани (избыточное или недостаточное его образование и отложение).

Кратко поговорим о причинах и механизмах некоторых из этих нарушений.

Нарушения всасывания. Условие, обеспечивающее нормальное всасывание жира, — его эмульгирование, расщепление на глицерин и жирные кислоты и образование соединений с желчными кислотами (раздел физиологии).

Понятно, что недостаток липазы, который возникает при заболеваниях поджелудочной железы, а также дефицит желчных кислот (обтурационная желтуха, цирроз) сопровождаются нарушением всасывания жира. В этом случае содержание жира в кале резко увеличивается, наблюдается стеаторея. Стеаторея может возникать и при использовании некоторых антибиотиков (неомицинового и тетрациклинового ряда), которые подавляют липолиз.

Всасывание будет нарушено при избытке в пище кальция и магния — так как при этом образуются нерастворимые в воде соли жирных кислот (мыла), которые выводятся через кишечник.

Процесс всасывания жиров страдает при нарушении фосфорилирования (при отравлении ядами) и при недостаточности коркового вещества надпочечников.

Процесс всасывания жиров тормозится при поражении эпителия тонких кишок инфекционными и токсическими агентами, при авитаминозах А и В.

В нормальных условиях через кишечник, потовые и сальные железы из организма выводится около 5 % поступившего жира, остальное усваивается.

Нарушения транспорта жира. Ресинтезированные в кишечной стенке жиры поступают в лимфатическую систему, затем в плечеголовные вены и циркулируют в крови в виде хиломикронов (содержат 1 % белков и 99 % липидов). Первым органом, в котором хиломикроны задерживаются, являются легкие. Они обладают свойством регулировать поступление жира в артериальную кровь. Если вентиляционная функция легких ограничена (эмфизема, пневмоторакс и др.), жиры задерживаются в них. Увеличение дыхательной активности и интенсификация кровообращения в органе (например у профессиональных певцов) приводят к большему поступлению липидов в артериальную кровь и отложению их в жировой ткани. Часть хиломикронов в крови расщепляется липопротеидной липазой, которая локализуется в эндотелии сосудов и выходит в кровь под влиянием гепарина. Образующиеся при этом неэстерифицированные жирные кислоты адсорбируются на альбумине и бета-липопротеидах и транспортируются в органы и ткани. В печени часть НЭЖК ресинтезируется в триглицериды, а часть используется как источник энергии. Жиры транспортируются кровью не только от кишок к органам и тканям, но и от жировой ткани к печени и другим органам.

Жировая инфильтрация и дистрофия. Поступающие в ткани жиры подвергаются окислению или депонируются. Если накапливание их происходит вне клеток жировой ткани, то говорят о жировой инфильтрации. Сочетание инфильтрации с нарушением структуры протоплазмы жировых клеток определяется как жировая дистрофия.

Причиной жировой инфильтрации обычно является снижение активности гидролитических или окислительных ферментов (при отравлениях, эндотоксикозах, инфекциях). Чаще всего жировая инфильтрация наблюдается в печени. При этом причинами жирового перерождения печени могут выступать: усиленный печеночный липогенез; угнетение процессов окисления жирных кислот; повышенный липолиз жировой ткани; замедление выделения липопротеинов очень низкой и низкой плотности. Продукция липопротеидов очень низкой плотности в печени требует сочетания процессов липидного и белкового синтеза. Поэтому нарушение любого из этих процессов приводит к аккумуляции жира в печени.

В патогенезе жировой инфильтрации большое значение имеет нарушение образования фосфолипидов. Достаточное содержание их в печени обеспечивает тонкое диспергирование жира и возможность удаления его из печени. Кроме того, фосфолипиды входят в состав бета-липопротеинов и облегчают их выход из печени.

Одним из показателей нарушения жирового обмена является гиперлипемия (норма 3,5–8 г/л).

Гиперлипемия может быть алиментарной или пищевой (через 2 часа после нагрузки жиром, пик — через 4–6 часов, через 9 часов содержание жира возвращается к норме), транспортной (при перемещении жира из депо в печень: при гиперкатехоламинемии, увеличении выделения тироксина и АКТГ, сахарном диабете), ретенционной (вследствие задержки жира в крови, например, при нефротическом синдроме, постгеморрагической анемии и т.д.).

Одним из наиболее важных нарушений промежуточного обмена жира является усиление кетогенеза. Вы знаете, что образующиеся в процессе бета-окисления жирных кислот кетоновые тела служат важнейшими компонентами системы обеспечения организма энергией, конкурируя в этом отношении с глюкозой. При невозможности использовать последнюю в качестве источника энергии в организме усиливаются липолиз и кетогенез. Непродолжительный и слабовыраженный кетоз может наблюдаться и при физиологических условиях (физическая и эмоциональная нагрузка, поздние сроки беременности). При патологическом кетозе производство кетоновых тел превышает утилизацию (в норме кетоновых тел в крови до 1,7 ммоль/л). Обычно это бывает при усилении липолиза в жировой ткани, когда печень не использует всех жирных кислот для синтеза триглицеридов и часть их включается в процесс окисления и кетогенеза (с конкретными проявлениями этого процесса вы будете сталкиваться при дальнейшем изучении дисциплины).

Нарушение обмена жира в жировой ткани. Жировая ткань характеризуется интенсивным метаболизмом, обильным кровоснабжением и является своего рода саморегулирующимся энергетическим аккумулятором. Накопление энергии в виде нейтральных жиров происходит в ней после каждого приема пищи, а мобилизация энергии — в любое время под влиянием импульсов, освобождающих жирные кислоты. Липолиз активируется адреналином, кортикотропином и глюкагоном. Жиромобилизующим эффектом обладают СТГ,ТТГ и тироксин.

Существенна и роль ЦНС в регуляции жирового обмена. Доказано, что длительное эмоциональное напряжение приводит к мобилизации жира из жировых депо и похуданию. Таков же эффект активации симпатической нервной системы. Активация парасимпатических нервов, напротив, сопровождается усиленным отложением жира.

Если в течение длительного времени накопление жира в жировой ткани превышает расход энергии — развивается ожирение.

За последние 20 лет число людей с ожирением в развитых странах возросло более чем на 50 %. При этом на 98 % увеличилось число людей, страдающих сверхожирением (морбидным ожирением, при котором масса тела превышает норму более чем на 45 кг).

Ожирение рассматривают как патологическое состояние, которое характеризует аномальное увеличение массы тела за счет избыточного отложения жира в жировой ткани. Оно является следствием расстройств гомеостаза энергетического обмена. Среди взрослого населения экономически развитых стран у 30–60 % масса тела превышает норму на 20 % и более. Ожирение чаще встречается у женщин и в возрастных группах старше 50 лет. Критерием нормальной массы тела или ее патологических сдвигов выступает так называемый индекс массы тела — отношение массы тела к росту тела в квадрате. Нормальным считается индекс массы около 21 кг/м2 (18,5–24,9).

Часто для расчета должной массы тела используют показатель Брока — рост в сантиметрах минус 100 равен нормальному весу обследуемого в килограммах. Этим показателем пользуются в пределах роста 155–165 см. При росте 165–175 вес умножают на 1,05, при росте 176–186 — на 1,1. Степень ожирения рассчитывают как отношение должной к измеренной массе и умноженной на 100 %: 1-я степень —15– 29 %; 2-я — 30–49 %; 3-я — 50–99 %; 4-я — 100 % и выше.

Большую роль в генезе ожирения играет наследственный фактор. Известно, что у родителей с излишней массой тела часто рождаются дети, которые потом страдают от ожирения. Тем не менее ожирение — это не жестко детерминированный фенотипический признак. Доказано, что избыточное питание в первые три месяца жизни через усиление дифференциации адипобластов до адипоцитов вызывает ожирение, от которого человек страдает на всех этапах онтогенеза.

Рациональное питание и двигательный режим могут предотвратить реализацию наследственной предрасположенности к ожирению.

Ниже приведена существующая классификация видов ожирения (П.Ф. Литвицкий, 2002) и степеней ожирения с учетом индекса массы тела.

Виды ожирения. ИМТ — индекс массы тела. N инд. 18,5–24,9.

При андроидном типе, более частом у мужчин, жир аккумулируется в основном в жировых клетках туловища (жировые подушки в области живота, в подмышечной области и т.д.) и сальника (висцеральные адипоциты). У женщин с андроидным типом ожирения существует прямая связь между массой тела и концентрацией андрогенов в крови. Показатель накопления жира в адипоцитах туловища и висцеральных жировых клетках — это отношение длины окружности талии к длине окружности нижней конечности в области верхней трети бедра. Об андроидном ожирении свидетельствует рост этого отношения. Увеличение его находится также в прямой связи с вероятностью таких заболеваний и патологических состояний, как сахарный диабет, гиперлипидемии, первичная артериальная гипертензия.

При гиноидном ожирении (чаще свойственно женщинам) жир откладывается в нижней части живота и на бедрах. При этом типе ожирения риск атеросклероза меньше, чем при андроидном.

Не все виды ожирения одинаково опасны. При периферическом ожирении с накоплением жира в глютеофеморальной зоне и нижней части живота риск ИБС, гипертонической болезни, неинсулинзависимого сахарного диабета такой же, как и у представителей основной популяции, не страдающих от ожирения. При аккумуляции жира в верхней части тела, под кожей живота и его органах (центральное, висцеральное ожирение) патологически увеличенная масса тела представляет собой фактор риска перечисленных заболеваний. Висцеральное ожирение представляет сосбой фактор риска наиболее частых болезней человека. Висцеральная жировая ткань через портальную систему находится как бы в прямом соединении с печенью. Мобилизация свободных жирных кислот при патогенном стрессе происходит в основном через липолиз в висцеральных адипоцитах. Это патогенно действует на печень. Возникают гипергликемия, дислипидемия и гиперинсулинемия.

Поступление в организм пищи (веществ, подвергающихся дальнейшей утилизации) происходит при регулирующем влиянии центральных вегетативных центров. Для регуляции массы и состава потребляемой пищи в центры по афферентным путям поступает информация о состоянии обмена веществ и изменениях внешней среды. Действие некоторых эндогенных раздражителей (гипогликемии и др.) через возбуждение соответствующих центров усиливает прием пищи. Побуждает к приему пищи и действие ряда экзогенных раздражителей: снижение температуры окружающей среды, запах пищи, вид сервированного стола.

Опухолевое повреждение вентромедиального гипоталамуса ведет к развитию синдрома гипоталамического ожирения. Он характеризуется: усиленным потреблением пищи, ростом секреции инсулина, снижением двигательной активности, эмоциональной неустойчивостью.

Экспериментальная деструкция нейронов гипоталамуса, локализованных латеральнее его вентромедиального ядра, приводит к противоположному результату. Животные временно прекращают есть, и у них снижается масса тела.

Вы знаете, что гипоталамус находится в основном под постоянным контролем симпатической части вегетативной нервной системы. Симпатические волокна пронизывают гипоталамус почти во всех направлениях. Введение альфа-адреномиметиков в гипоталамус повышает интенсивность поиска и потребления пищи экспериментальными животными, а инъекция бета-адреномиметиков прекращает потребление пищи и вызывает поведенческий эквивалент насыщения. В связи с этим выделяют альфа-адренергический центр голода и бета-адренергический центр насыщения.

Ожирение может быть результатом расстройств нейроэндокринной регуляции. Экспериментами (Coleman) установлено, что мутация гена ожирения обусловливает дефицит фактора анорексии, циркулирующего с кровью. В дальнейшем было установлено, что этот ген кодирует полипептидный гормон, названный лептином. Лептин синтезируется в жировых клетках и секретируется в кровь. Содержание лептина в организме представляет собой прямую функцию общей массы жировых запасов организма. Лептин — это гуморальный переносчик обратной афферентации в системе удержания массы жира в организме на одном уровне. Ожирение может быть следствием или дефицита экспрессии гена лептина, или резистентности лептина (недостаточной реакции клеток-мишеней). Секреция лептина угнетается не только в ответ на рост массы жира в организме, но и в ответ на снижение поступления в организм экзогенных нутриентов. Лептин проникает в мозг через эндотелий ГЭБ. Считается, что лептин угнетает транссинаптическую передачу, связанную с действием нейропептида Y. Действие нейропептида Y в области паравентрикулярного ядра увеличивает потребление пищи и угнетает эфферентацию из высших симпатических центров на периферию, тем самым снижается потребление свободной энергии организмом, что вместе с ростом поступления во внутреннюю среду нутриентов вызывает накопление жира.

Наиболее частое из нарушений эндокринной регуляции обмена веществ у больных с ожирением — это повышенная активность в крови инсулина — гиперинсулинемия (в основе лежит избыточное поступление с пищей нутриентов). Чем больше ожирение, тем больше концентрация инсулина в крови утром и натощак. Гиперинсулинемия у больных с ожирением приводит обычно к большей суммарной длительности действия гипогликемии как внутреннего стимула к потреблению пищи.

Гиперинсулинемия вызывает резистентность клеток к эффекту инсулина на рецепторном и пострецепторном уровнях. Кроме того, гиперинсулинемия связана с гиперплазией инсулинобразующих клеток островков Лангерганса, которая на определенном этапе своего развития может обусловить недостаточность внешнесекреторной функции поджелудочной железы.

Кроме того, гиперинсулинемия повышает утилизацию аминокислот для белкового синтеза. Это, в частности, вызывает гиперплазию гладкомышечных элементов стенки сосудов сопротивления. В результате их просвет сужается, ОПСС растет и возникает артериальная гипертензия. Избыточное потребление нутриентов активирует симпатический отдел нервной системы и повышает секрецию щитовидной железой ее гормонов, что вызывает рост потребления кислорода организмом. Вслед за этим растет МОК, что также способствует развитию артериальной гипертензии.

Гиперлипидемия и накопление триглицеридов в жировой ткани требуют повышения интенсивности обмена холестерина. В результате растет экскреция холестерина с желчью, следовательно — создаются условия для образования камней в просвете желчного пузыря.

Гиперлипидемии. Гиперлипидемия и гиперлипопротеинемия — патологическое состояние предболезни или заболевание, связанное с ростом содержания в плазме крови свободных жирных кислот, триглицеридов, холестерина, хиломикронов и липопротеинов.

Вы уже, наверное, знаете, что существует прямая связь между концентрацией липидов в плазме крови и вероятностью атеросклероза как причины ишемической болезни сердца.

В зависимости от того, в какой степени концентрация тех или иных липопротеинов способна обусловить возникновение атеросклероза, их подразделяют на атерогенные и неатерогенные (и даже антиатерогенные).

В клинике выделяют пять типов гиперлипидемий (В.Ю. Шанин, 1998).

Семейная гиперлипидемия первого типа — врожденное нарушение липидного обмена, обусловленное недостаточным расщеплением хиломикронов и ЛПОНП вследствие низкой активности катализатора их гидролиза (липопротеинлипазы) или недостатка активатора этого фермента. Поскольку в этом случае в плазме растет концентрация неатерогенных липопротеинов очень низкой плотности и хиломикронов, то атеросклероз у таких больных обычно не развивается.

Гиперлипидемия второго типа — наследственное нарушение, при котором у родственников или членов одной семьи выявляют патологически высокое содержание холестерина в крови (семейная гиперхолестеринемия). Для таких больных характерно раннее и быстрое развитие атеросклероза, ИБС и инфаркта миокарда которые служат причиной внезапной смерти в возрасте от 20 до 50 лет. Ведущим звеном патогенеза гиперхолестеринемии и высокого содержания в плазме атерогенных ЛПНП при гиперлипидемии этого типа является или полное отсутствие рецепторов к ЛПНП на наружной клеточной поверхности, или нарушения их строения и функции вследствие мутации определенных генов.

Гиперлипидемия третьего типа — это наследуемая недостаточность катаболизма атерогенных липопротеинов промежуточной плотности. Этот вариант гиперлипидемии характеризуют ускоренное развитие атеросклероза, частая тромбоэмболия из системы венечной артерии, сахарный диабет, ожирение, гипотиреоз и сильно выраженный ксантоматоз.

Гиперлипидемия четвертого типа — это наследуемое нарушение липидного обмена, характеризующееся ростом содержания в плазме крови триглицеридов и ЛПОНП.

Наследуются вышеперечисленные варианты гиперлипидемий по аутосомно-доминантному типу.

Гиперлипидемия пятого типа — это полиэтиологичное нарушение липидного обмена, из-за которого у части больных возникают ксантоматоз и панкреатит как следствие очень высоких концентраций в плазме крови ЛПОНП и хиломикронов.

Атеросклероз. В основе этиопатогенеза данной патологии (и как ее следствия — ИБС) лежит липидная гипотеза.

Она основана на таких фактах:

1) атеросклеротическая бляшка содержит липиды, поступающие в нее прямо из липопротеинов плазмы крови;

2) атеросклеротические поражения сосудов воспроизводятся в эксперименте при кормлении животных пищей с высоким содержанием холестерина;

3) гиперлипидемию всегда выявляют у больных с диагнозом атеросклероз;

4) установлена паралель между высоким риском возникновения ИБС и ростом в плазме крови концентрации ЛПНП и снижении в ней содержания ЛПВП.

По современным представлениям, атеросклероз — это отложение в интиме сосудов атерогенных липопротеинов низкой плотности вследствие взаимодействия гладкомышечных клеток стенок сосудов с атерогенными липопротеинами при их высокой концентрации в циркулирующей крови.

При гистологическом исследовании пораженных атеросклерозом участках сосудистой стенки выявляют характерное патологическое образование — атеросклеротическую бляшку. Ее формируют липиды, лейкоциты, гладкомышечные клетки и межклеточное вещество интимы артерий.

До сих пор у части врачей бытует представление, связывающее атеросклероз с пропитыванием холестерином сосудистой стенки, что не совсем правильно. Холестерин и триглицериды переносятся во внеклеточном пространстве липопротеинами. К атеросклерозу ведет не гиперхолестеринемия, а аккумуляция в сосудистой стенке определенных липопротеинов. Поэтому одни из них считают атерогенными, а другие неатерогенными.

Под атерогенными нужно понимать липопротеины, которые проникают в сосудистую стенку, где происходит их эндоцитоз макрофагами, которые в результате эндоцитоза превращаются в пенистые клетки. В последующие стадии патологического процесса происходит отложение аморфного холестерина и его кристаллов в межклеточных пространствах сосудистой стенки, т. е. вне пенистых клеток.

Установлено, что поверхность макрофагов содержит рецепторы к окисленным липопротеинам низкой плотности («рецепторы-мусорщики»). Мусорщиками эти рецепторы называют потому, что они обладают высоким сродством к «мусору» в виде окисленных ЛПНП. Предполагают, что активация мононуклеаров осуществляется как раз через связывание этих рецепторов окисленными атерогенными липопротеинами.

Начальным этапом патогенеза атеросклероза является адгезия моноцита циркулирующей крови к эндотелиальным клеткам, с их последующей миграцией в интиму. При этом индукторы атеросклероза, окисленные ЛПНП, воздействуя на лейкоциты циркулирующей крови и эндотелиальные клетки, вызывают экспрессию на их поверхности адгезивных молекул (ЭЛАМ).

Итак, адгезия лейкоцитов к сосудистой стенке служит первым этапом их проникновения в интиму. Там активированные лейкоциты (моноциты) секретируют ряд активаторов эндотелия и хемоаттрактантов, стимулирующих дальнейшую инфильтрацию очага атеросклеротического повреждения моноцитами и лимфоцитами (наличие в патогенных реакциях лимфоцитов указывает на участие в развитии атеросклероза иммунопатологической реакции).

Кроме того, пенистые клетки высвобождают ряд цитокинов, чье действие вызывает пролиферацию клеточных элементов, и в особенности миоцитов гладкомышечных элементов сосудистой стенки. Еще цитокины активированных макрофагов активируют эндотелиоциты, что ведет к росту экспрессии их тромбогенного потенциала. Цитокины пенистых клеток активируют также и нейтрофилы циркулирующей крови, что вызывает воспаление с полиморфонуклеарами в качестве его клеточных эффекторов. В результате в составе атеросклеротической бляшки находят пролиферирующие миоциты сосудистой стенки, агрегаты активированных тромбоцитов, других форменных элементов крови, активированные нейтрофилы и нити фибрина. Все это характеризует атеросклеротическую бляшку как очаг воспаления и локус тромбоза.

Таким образом, атеросклероз во многом представляет собой хроническое воспаление сосудистой стенки, протекающее с преобладанием пролиферативного компонента, основными клеточными эффекторами которого являются моноциты циркулирующей крови, мононуклеарные фагоциты субинтимального слоя, гладкомышечные сосудистые клетки, активированные атерогенными липопротеинами или в результате межклеточных взаимодействий (В.Ю. Шанин, 1998).

Указанная роль макрофагов, окисленных липопротеинов, является определяющей в индукции атеросклероза. В дальнейшем процесс образования атеросклеротической бляшки теряет связь с этими этиологическими факторами. Далее через патогенные межклеточные взаимодействия происходит эндогенизация процесса.

В последнее десятилетие появляется все больше данных, свидетельствующих о генетической обусловленности высокой концентрации в крови ЛПНП и атеросклероза. В частности, обследование более 500 больных, выживших после инфаркта миокарда, показало, что в половине случаев выявлялись семейная гиперхолестеринемия, семейная гиперлипидемия и комбинированные гиперлипидемии. Было установлено, что эти расстройства липидного обмена являлись фенотипическими признаками, детерминированными одним геном.

В нормальных условиях взаимодействие молекулярного комплекса холестерин-ЛПНП и ЛПНП-рецептора на поверхности клеток ведет к пиноцитозу молекулярного комплекса. Далее комплекс инкорпорируется в лизосомы, где и происходит высвобождение свободного холестерина. Рост концентрации свободного холестерина в клетке снижает активность ключевого фермента внутриклеточного синтеза холестерина (гидроксиметилглютарил-коэнзим А-редуктазы).

Наследуемая недостаточность ЛПНП-рецепторов ведет к снижению пиноцитоза комплекса холестерин-ЛПНП и к падению концентрации свободного холестерина в клетках. Вследствие этого в клетках повышается активность ключевого фермента синтеза холестерина. Последствие — интенсивное образование холестерина клетками, его высвобождение во внеклеточное пространство и рост в нем содержания атерогенных липопротеинов переносчиков холестерина. Отсюда понятно, что гиперхолестеринемия вызывает атеросклероз не через пропитывание стенки сосудов холестерином, а через повышение интенсивности образования (печенью) и высвобождения в кровь атерогенных липопротеинов.

Гиперхолестеринемия алиментарного генеза также повышает риск атеросклероза через увеличение в крови концентрации ЛПНП и других атерогенных липопротеинов, переносящих холестерин во внеклеточном пространстве. Рост концентрации ЛПНП повышает массу циркулирующих с кровью продуктов их окисления, вступающих во взаимодействие с рецепторами-мусорщиками наружных клеточных мембран макрофагов, т. е. повышает вероятность реализации инициирующего момента атеросклероза.

Патофизиология липидного обмена

С семидесятых годов ХХ века основное внимание в исследованиях обмена веществ занимает проблематика нарушений метаболизма липидов. Причиной тому – высокая частота наследственных и приобретенных расстройств жирового обмена у населения развитых стран По данным ВОЗ, не менее 10 % жителей планеты (а в Европе и Северной Америке – более 20 %) страдают дислипопротеинемиями. До 1-2 % европейцев поражено семейной наследственной гиперхолестеринемией, более 50 % женщин и мужчин, а также не менее 10 % детей страдают различными формами и степенью ожирения. Около 50 % общего уровня смертности обусловлено сердечно-сосудистыми заболеваниями, патогенетической основой которых служит атеросклероз. В России в 2002 г. смертность от сердечно-сосудистой патологии составила 56 %.

Ведущим механизмом этой патологии является нарушение жирового метаболизма. Использование современных научных достижений патофизиологии липидного обмена привело к впечатляющим успехам в истории медицины – к концу 80-х годов в Северной Америке смертность от ишемической болезни сердца снизилась на 60 %.

Понятие о липидах организма и пищи. Липиды – большая группа органических соединений с характерными признаками: нерастворимые в воде, растворимые в эфире, ацетоне, хлоруглеродных растворителях, содержат высшие алкильные радикалы, имеют строение сложных эфиров с участием жирных кислот и спиртов.

Простые липиды содержат в своем составе только углерод, водород и кислород и гидролизуются на жирные кислоты (ЖК) и спирты. К ним относятся ЖК, глицериды [в частности, триацилглицериды (ТГ), т.е. нейтральные жиры], липоспирты [холестерин (ХН), ретинол, кальциферол, эфиры ХН], воска (ланолин, спермацет).

Сложные липиды в дополнение к составу уже указанных химических элементов содержат азот, а часто – фосфор и серу. Примерами сложных липидов являются фосфолипиды (ФЛ), включая глицерофосфолипиды, сфинголипиды и гликолипиды (в том числе ганглиозиды, сульфатиды и цереброзиды). Наличие сложных группировок у липидов обеспечивает их гидрофильность, а углеводородных групп – гидрофобность. Степень выраженности этих свойств оценивается уровнем амфифильности липидов. Нейтральные жиры слабо амфифильны, поэтому депонируются в безводной среде. Глицерофосфолипиды сильно амфифильны, поэтому в водной среде могут образовывать бислой, обращенный гидрофильными остатками в водную фазу, а гидрофобными – внутрь.

Особенности строения различных липидов определяют их основные функции:

  • резервно-энергетическая, в основном обеспечивается ТГ;

  • мембранообразующая, связанная с метаболизмом глицерофосфолипидов;

  • рецепторно-посредниковая, обеспечивается гликолипидами, особенно их представителями – гликосфинголипидами;

  • регуляторно-сигнальная, опосредованная липоспиртами (химическая основа стероидов).

Общеизвестно, что основным энергоресурсом в организме является жир. Его запасы составляют 16–23 % всей массы тела. Из общего количества липидов в организме (10-16 кг) около 2 кг включено в клетки нежировой ткани (конституциональный жир), остальная масса находится в адипоцитах (липоцитах), причем одна половина объема – в подкожно-жировой клетчатке, другая – в сальнике и жировой ткани висцерального отсека тела. Количество адипоцитов детерминировано генетически, а их размер определяется полом, возрастом, воздействием регуляторных и метаболических факторов. Число жировых клеток относительно постоянно и с возрастом не меняется. У женщин их больше, чем у мужчин. В организме молодых людей их количество приближается к 3×1010, содержание жира в каждом адипоците близко к 0,6 мкг, а у лиц с ограниченной физической активностью – 4,6 ×1010. Теплотворная способность жиров намного выше углеводов. Так, при распаде одной молекулы пальмитата выделяется 130 молей АТФ, а при окислении одного моля глюкозы – 38 молей АТФ. Для энергетических нужд некоторые органы (например, миокард) используют в основном ЖК и дериваты липидов, например кетоновые тела, и глюкозу (мозг). Скелетные мышцы метаболизируют ЖК при обычной нагрузке, а при интенсивной мышечной деятельности – глюкозу. Избыточное накопление жиров в жировой ткани называется ожирением, а накопление их вне адипоцитов (чаще в клетках печени, сердца, почках) – жировой трансформацией.

Фосфолипиды. Они представляют собой эфиры многоатомных спиртов глицерина или сфингозина с высшими жировыми кислотами и фосфорной кислотой. Кроме того, ФЛ в своей структуре содержат азотосодержащие соединения – аминокислоту серин, аминоспирты этаноламин, холин. Для синтеза ФЛ необходимы спирты – холин и инозит. Оба вещества условно называют витаминоподобными. В организме холин синтезируется лишь при наличии метионина, фолацина, кобаламина и пиридоксина. Инозит в изобилии имеется во всех животных и растительных продуктах (фитины), а также синтезируется кишечной микрофлорой человека. ФЛ являются важнейшим компонентом биомембран. Они высоко амфифильны, поэтому в водном растворе клеток легко образуют бислой цитоплазматических мембран, а на поверхности частиц липопротеидов (ЛП) представлены монослоем. В мембранах клеток обязательно находится ХН, кооперирующий гидрофобными и ионными связями с ФЛ мембранных белков. Согласно одной из моделей, белки как островки плавают в фосфолипидном озере мембран.

Химический состав ФЛ мембран разных клеток неоднороден, и даже наружный монослой отличается от внутреннего большим содержанием фосфатидилхолина. Единственным ФЛ, обладающим антигенными свойствами, признается кардиолипин митохондриальных мембран (дифосфатидилглицерид). Иммунологический тест на его определение служит для диагностики системной красной волчанки. ФЛ могут переходить из одного слоя мембраны в другой, обмениваться в пределах своего слоя, а также между мембранами при контакте с клетками или с липопротеидами (ЛП) крови. ЛП – это сфероподобные комплексы, состоящие из молекул экзогенных и эндогенных липидов и транспортных белков – апопротеинов. ЛП приобретают растворимость за счет гидрофильного наружного слоя, состоящего из ФЛ, ХН и апопротеинов. Внутри ЛП находится гидрофобное ядро, содержащее основной и разный по составу груз этой частицы и представленное ХН, неполярными эфирами ХН, ТГ, ЖК. ФЛ мембран постоянно обновляются с помощью компонентов, приносимых в составе ЛП. По химическим свойствам и метаболической роли выделяют 5 классов ЛП.

  • Хиломикроны (ХМ) – это форма кругооборота экзогенных липидов, основной переносчик ТГ пищи из кишечника в ткани и печень. Диаметр частиц 100-1100 нм, они содержат некоторое количество белка (1-2 %), в основном апопротеин В48, С1-3 и ФЛ (3-8 %). При электрофорезе на ацетилцеллюлозе остаются на старте. Формируют  и V типы гиперлипопротеинемий (ГЛП). Они минимально атерогенны, но увеличивают риск тромбоза, эмболий и панкреонекрозов.

  • ЛПОНП – это форма кругооборота эндогенных ТГ, образуемых в печени. Диаметр 28-100 нм, содержит 7-10 % белка в виде апопротеина В100, 12-18 % ФЛ. При электрофорезе формируют пре--липопротеидную фракцию. Содержат мало ХН и его эфиров и обладают небольшим атерогенным потенциалом. Формируют V и V типы ГЛП.

  • ЛППП – липопротеиды промежуточной плотности, при электрофорезе формируют медленную β-фракцию размером 25-30 нм. ЛППП переносят эфиры ХН и ТГ в ткани. Высоко атерогенны, формируют ΙΙΙ и ΙΙб типы ГЛП.

  • ЛПНП – липопротеиды низкой плотности формируют β-фракцию при электрофорезе размером 20-25 нм. Оба класса являются продуктом метаболизма ЛПОНП. ЛПНП поставляют в ткани ХН, эфиры ХН, обладают очень высоким атерогенным потенциалом (содержат до 75 % от общего уровня всех форм плазменного ХН), формируют ΙΙа и ΙΙб типы ГЛП. ЛП β-фракций содержат много апопротеина В.

ЛПНП через апо-В/Е-зависимые рецепторы путем эндоцитоза поставляют готовый ХН многим клеткам [адренокортикоцитам, гепатоцитам, нефроцитам, клеткам гонад, лимфоцитам, гладкомышечным клеткам (ГМК) и фибробласта сосудистой стенки], несмотря на способность этих клеток самостоятельно синтезировать эндогенный ХН из ацетил-КоА. Оставшаяся (менее 80 %) часть апо-В-зависимых ЛП захватывается макрофагами путем фагоцитоза и деградирует в этих «клетках-мусорщиках». У человека ЛПНП является также основной транспортной формой эссенциальных полиеновых (полиненасыщенных) жирных кислот (поли-ЖК) в форме эфиров ХН, точнее этерифицированных холестерином (эХН) эссенциальных поли-ЖК.

Существует мнение о наличии рездельного переноса ЛП и раздельного поглощения клетками насыщенных (нЖК) и поли-ЖК через разные рецепторы. В последнее десятилетие в теории атеросклероза обсуждается эндогенная патология, пусковым звеном которой является блокада рецепторного поглощения клетками ЛПНП. Результатом утилизации клетками ЛПНП через апо-В-100 рецепторы возникает, во-первых, дефицит в клетках эссенциальных (жизненно необходимых) поли-ЖК и, во-вторых, затруднение удаления из крови ЛПНП (основной переносчик эссенциальных поли-ЖК), уровень которых повышается, и они, по сути, становятся «инородными телами». Нарушение физиологического баланса этих веществ местно и на уровне целостного организма запускает развитие атеросклероза как системной реакции на повреждение с общими механизмами патогенеза воспаления.

  • ЛПВП – липопротеиды высокой плотности (частицы размером 7-10 нм). Эта группа богата ФЛ, переносит в печень ХН, эфиры ХН, ФЛ, осуществляет дренаж тканей. ЛПВП обладают антиатерогенными свойствами. Они образуют α-фракцию при электрофорезе, формируют гипер-α-липопротеинемию, содержат апопротеины А, С (1-3) и Е. ЛПВП выполняют роль челноков, поставляя ХМ апопротеиды А и С; последние являются активаторами липопротеинлипазы (ЛПЛ). С помощью этого механизма ЛПВП регулируют скорость катаболизма ХМ и ЛПОНП. Частицы ЛПВП собираются в печени и кишечнике на основе апопротеинов А из насцентных дисков малого размера (остатков оболочки ХМ, богатых ФЛ), насыщенных апопротеинами С и Е. Во время перехода дисков через сосудистую стенку апопротеин Е связывает избыток ХН. Апопротеины дисков обладают высоким сродством к ФЛ и, обогащаясь ими, превращаются в ЛПВВ. На поверхности частиц ЛПВП ХН этерифицируется с помощью фермента лецитин-холестерин-ацил-трансферазы (ЛХАТ). Катализатором этой реакции является апопротеин А. Образовавший эХН уходит внутрь частиц ЛПВП в состав ядра. В печени ЛПВП катаболизируются. К изложенному добавим, что апопротеины синтезируются в печени и энтероцитах.

При наследственном отсутствии ЛПНП и ЛПОНП (патологическое состояние – абеталипопротеинемия) нарушается стабильность мембран. Примером может служить нестабильность мембран у пациентов с гемолитической анемией, сопровождающаяся акантоцитозом. При любой альтерации мембрана становится источниками БАВ – эйкозаноидов, синтезируемых на основе метаболизма ЖК и ФЛ, модулирующих местные типовые патологические процессы при повреждении.

Кроме того, производные ФЛ (в том числе простагландины) играют важную роль в передаче сигналов клетке, в связи с чем их называют липидными посредниками. Эти липидные продукты (например, инозитолтрифосфат и диацилглицерин) образуются при активации «фосфолипазы С» мембраны под влиянием G-белков. Вместе с ними они служат посредниками стимуляции комплекса протеинкиназы С, которая, в свою очередь, фосфорилирует многие клеточные белки, модулируя активность генетических программ роста и размножения. Одновременно происходит образование избыточного количества простагландинов. На уровне клетки они опосредуют действие многих факторов роста и гормональных стимулов. Например, механизм действия кротонового масла, являющегося коканцерогеном (но не канцерогеном), заключается в стимуляции образования липидных посредников и включении программы патологии клеточного роста. Действие многих цитокинов, например, интерлейкинов по ходу развития синдрома ООФ, реализуется через липидные посредники – простагландины.

Гликолипиды. Эти липиды являются рецепторными посредниками, участвуют в распознавании химических сигналов и доведении их до внутриклеточных эффектов. Ведущее место в этой группе липидов принадлежит гликолипидам – цереброзидам и ганглиозидам. В их входят спирт сфингозид, высшие жирные кислоты (вЖК) и остатки гексоз – галактозы или глюкозы. Ганглиозиды содержат также нейраминовую кислоту и гетероолигосахариды. Любой клеточный рецептор имеет в своем составе, кроме белковой, ганглиозидную часть, с помощью которой фиксируется на мембране. Гликолипиды обладают антигенными свойствами. Поэтому в патологии возможно формирование аутоантител к ганглиозидной части клеточного рецептора, что приводит к информационным сдвигам в клетке. Примером может служить появление аутоантител против гликозидной части рецепторов тиреотропного гормона (ТТГ), которые стимулируют рецепторы фолликулярных клеток щитовидной железы, что ведет к развитию гипертиреоза при Базедовой болезни. В патогенезе формирования аутоантител имеет место механизм перекрестной аллергии, провоцируемый инфекцией, поскольку некоторые бактерии обладают антигенами, имеющими сходства с белками рецепторов человека. Существует класс наследственных болезней накопления гликосфинголипидов из-за дефекта лизосомальных ферментов, который проявляется различными видами рецепторных нарушений. Общими клиническими проявлениями этой патологии служат нарушения функции центральных анализаторов (амавроз – слепота), двигательные расстройства, нарушения почечной реабсорбции.

Липоспирты. В эту группу входят многие липиды, являющиеся производными ХН – стероиды, которым присуща регуляторно-сигнальная роль. К ним относят кальциферол (витамин D), ретинол, минералкортикоиды, глюкокортикоиды, половые гормоны и некоторые другие вещества мезенхимального и лимфоидного происхождения. Таким образом, ХН в физиологической мере – необходим для организма и является безвредным продуктом. В организме человека общее содержание ХН более 300 г, причем свободного в 3 раза больше, чем эХН. В сутки его синтезируется более 1000 мг при ежедневной потребности 0,2-0,5 г. В то же время, такое количество ХН преобразуется в желчные кислоты, выводится с калом (копростерин) и с кожным салом. В составе клеточных мембран ХН придает им прочность, барьерные свойства, защищает от электрического пробоя, влияет на активность ферментов. Избыток ХН тормозит работу кальциевых насосов, способствуя накоплению внутриклеточного кальция и его токсическому эффекту. При перегрузке плазматических мембран ХН и невозможности избавления от него клетки размножаются для уменьшения его удельного содержания в мембранах. Такой механизм пролиферации фиброцитов и ГКМ прослеживается при атеросклерозе и ксантоматозе.

Тесты по разделу патология липидного обмена:

Ненасыщенные жирные кислоты называют витамином:

  1. F

  2. E

  3. U

  4. A

  5. B

Липотропными факторами являются:

  1. Липокаин

  2. Лептин

  3. Холин

  4. АТФ

  5. Рибофлавин

Лептин –это гормон

  1. Гипоталамуса

  2. Гипофиза

  3. ЖКТ

  4. Адипоцитов

  5. Надпочечников

Последствиями недостаточности ненасыщенных жирных кислот является:

  1. Нарушения сперматогенеза

  2. Ожирение

  3. Атеросклероз

  4. Жировая дистрофия печени

  5. Понижение перекисного окисления липидов

Эмульгирование жиров – это

  1. Расщепление триглицеридов на глицерин и жирные кислоты

  2. Дробление крупных капель жира в мелкие при участии желчных кислот

  3. Образование хиломикронов

Основными причинами нарушения расщепления и всасывания жиров являюися:

  1. Дефицит лактазы

  2. Дефицит лептина

  3. Дефицит липазы

  4. Дефицит гастроинтестинального гормона

Желчнокаменной болезни способствуют:

  1. Недостаток ЛПНП

  2. Недостаток ЛПВП

  3. Недостаток апопротеина А

  4. Избыток апопротеина C-II

Повышение содержания кетоновых тел в крови не характерно для:

  1. Гипогликемической комы

  2. Кетоацидотической комы

  3. Гиперосмолярной комы

  4. Лактацидемической комы

Ожирению способствует повышение содержания:

  1. тонуса симпатической нервной системы

  2. инсулина

  3. глюкокортикоидов

  4. половых гормонов

  5. тироксина

Ожирению препятствует повышение содержания:

  1. половых гормонов

  2. тироксина

  3. инсулина

  4. глюкокортикоидов

Ожирение способствует:

  1. Повышению АД

  2. Снижению АД

  3. Увеличению свертывания крови

  4. Понижению свертывания крови

  5. Развитию ацидоза

При закупорке общего желчного протока могут развиваться

  1. Гиперхиломикронемия

  2. Стеаторея

  3. Диарея

  4. Появление в кале мышечных волокон

Наиболее богаты холестерином:

  1. Хиломикроны

  2. ЛПНП

  3. ЛПВП

  4. ЛПОНП

Жиромобилизирующим действием обладают

  • Инсулин

  • Тироксин

  • Альдостерон

  • Окситоцин

Для расщепления триглицеридов в кишечнике необходимы:

  1. Соляная кислота

  2. Амилаза

  3. Апопротеин С

  4. Желчь

К ненасыщенным жирным кислотам относятся:

  1. Арахиновая

  2. Пальмитиновая

  3. Стеариновая

  4. Арахидоновая

Главная транспортная форма экзогенных триглицеридов

  1. ЛПНП

  2. ЛПОНП

  3. ЛПВП

  4. Хиломикроны

К реакция межуточного обмена липидов относятся

  1. Дезаминирование

  2. Глюконеогенез

  3. Β-окисление

  4. Декарбоксилирование

  5. Кетообразования

Жировое голодание приводит к:

  1. Не имеет последствий

  2. к исхуданию

  3. Увеличивает распад белка

  4. к тотальному авитаминозу

  5. к дефициту жирорастворимых витаминов

Нормой холестерина в крови следует считать

  1. 3,9-6,2 ммоль/л

  2. 2,2-3,8 ммоль/л

  3. 2,8-4,7 ммоль/л

  4. 6,3-9,5 ммоль/л

К ненасыщенным жирным кислотам относятся

  1. Масляная

  2. Пальмитиновая

  3. Стеариновая

  4. Арахидоновая

  5. линолиевая

Для расщепления триглицеридов в кишечнике наиболее необходимы

  1. Соляная кислота

  2. Амилаза

  3. Секреты поджелудочной железы

  4. Желчь

Атерогенными липопротеидами являются:

  1. ЛПВП

  2. ЛПНП

  3. ЛППП

  4. Хиломикроны

Антиатерогенными липопротеидами являются:

  1. ЛПВП

  2. ЛПНП

  3. ЛППП

  4. Хиломикроны

  5. ЛПОНП

Транспорт холестерина в ткани происходит при участии

  1. ЛПВП

  2. ЛПНП

  3. ЛППП

  4. ХМ

ЛПОНП

Транспорт эндогенного жира происходит при участии:

  1. ЛПВП

  2. ЛПНП

  3. ЛППП

  4. ХМ

  5. ЛПОНП

Антиатерогенная функция ЛПВП связана с наличием фермента:

  1. ацетилхолестеринацилтрансферазы

  2. эндотелиальной липопротеидлипазы

  3. печеночной липопротеидлипазы

  4. орнитинкарбамаилтрансферазы

Экскреция холестерина из тканей происходит при участии

  1. ЛПНП

  2. ЛППП

  3. ХМ

  4. ЛПВП

  5. ЛПОНП

Липопексическая функция легких происходит при участии:

  1. ацетилхолестеринацилтрансферазы

  2. эндотелиальной липопротеидлипазы

  3. печеночной липопротеидлипазы

  4. липокаина

фосфолипазы

Образованию камней при желчно-каменной болезни способствует повышение:

  1. свободнокристаллического холестерина

  2. желчных кислот

  3. этерификации холестерина

  4. билирубина

Триглицериды в кишечнике расщепляются до:

  1. Холина

  2. Хиломикронов

  3. Жирных кислот

  4. Кетоновых тел

  5. Холестерина

В активации эндотелиальной липопротеидлипазы принимает участие:

  1. Апопротеин C-I

  2. Апопротеин C-II

  3. Апопротеин C-III

  4. Апопротеин A-I

  5. Гепарин

В развитии гиперхиломикронемии имеет значение:

  1. отсутствие рецепторов к апопротеину В

  2. недостаточность липопротеидлипазы

  3. дефицит апопротеина С2

  4. синтез аномальных ЛПОНП

Количество адипоцитов с возрастом:

  1. увеличивается

  2. уменьшается

  3. не изменяется

Арахидоновая кислота является предшественником:

Дефицит какой аминокислоты способствует жировой инфильтрации печени:

  • триптофан

  • аргинин

  • метионин

  • валин

Жировой дистрофии печени способствует дефицит:

  1. Гистидина

  2. Глутамина

  3. Метионина

  4. Таурина

 Нарушения липидного обмена

Липиды — разнородные по химическому составу вещества. В организме человека имеются разнообразные липиды: жирные кислоты, фосфолипиды, холестерин, триглицериды, стероиды и др. Потребность человека в жирах колеблется в диапазоне 80-100 г в сутки.

Функции липидов

• Структурная: Липиды составляют основу клеточных мембран.

• Регуляторная.

† Липиды регулируют проницаемость мембран, их коллоидное состояние и текучесть, активность липидозависимых ферментов (например, аденилат‑ и гуанилатциклаз, Na+,K+‑АТФазы, Ca2+‑АТФазы, цитохромоксидазы), активность мембранных рецепторов (например, для катехоламинов, ацетилхолина, инсулина, цитокинов).

† Отдельные липиды — БАВ (например, Пг, лейкотриены, фактор активации тромбоцитов, стероидные гормоны) — регулируют функции клеток, органов и тканей.

• Энергообеспечивающая. Липиды являются одним из главных источников энергии для поперечнополосатой мускулатуры, печени, почек и дополнительным источником энергии для нервной ткани.

• Защитная. В составе подкожной клетчатки липиды образуют буферный

слой, защищающий мягкие ткани от механических воздействий.

•Изолирующая. Липиды создают термоизолирующую прослойку в поверхностных тканях организма и электроизолирующую оболочку вокруг нервных волокон.

Типовые формы патологии

Типовые формы патологии липидного обмена представлены на рис. 10–1.

Рис. 10–1. Типовые формы патологии липидного обмена.

• В зависимости от уровня нарушений метаболизма липидов выделяют расстройства:

† Переваривания и всасывания липидов в ЖКТ (например, в результате дефицита липаз поджелудочной железы, нарушения желчеобразования и желчевыделения, расстройств полостного и «мембранного» пищеварения).

† Трансмембранного переноса липидов из кишечника в кровь и утилизации их клетками (например, при энтеритах, нарушении кровообращения в стенке тонкого кишечника).

† Метаболизма липидов в тканях (например, при дефекте или недостаточности липаз, фосфолипаз, ЛПЛазы).

• В зависимости от клинических проявлений различают ожирение, истощение, дислипопротеинемии, липодистрофии и липидозы.

Ожирение

Нормальное содержание жировой ткани у мужчин составляет 15–20% массы тела, у женщин — 20–30%.

Ожирение — избыточное (патологическое) накопление жира в организме в виде триглицеридов. При этом масса тела увеличивается более чем на 20–30%.

По данным экспертов ВОЗ, в развитых странах Европы избыточную массу тела имеют от 20 до 60% населения, в России — около 60%.

Само по себе увеличение массы жировой ткани не представляет опасности для организма, хотя и снижает его адаптивные возможности. Однако, ожирение увеличивает риск возникновения ИБС (в 1,5 раза), атеросклероза (в 2 раза), гипертонической болезни (в 3 раза), СД (в 4 раза), а также некоторых новообразований (например, рака молочной железы, эндометрия и простаты).

Виды ожирения

Основные виды ожирения приведена на рис. 10–2.

Рис. 10–2. Виды ожирения. ИМТ — индекс массы тела (см. в тексте).

• В зависимости от степени увеличения массы тела выделяют три степени ожирения. При этом применяют понятие «идеальная масса тела».

Для оценки идеальной массы тела используют различные формулы.

† Наиболее простая — индекс Брока: из показателя роста (в см) вычитают 100.

† Индекс массы тела вычисляют также по следующей формуле:

Масса тела считается нормальной при индексе массы тела в диапазоне 18,5–24,9. При превышении этих значений говорят об избыточной массе тела (табл. 10–1).

Таблица 10–1. Степени ожирения

ИМТ

Степень

Описательная оценка

18,5–24,9

 

Норма

25–29,9

I

Повышенная масса тела («степень зависти окружающих»)

30–39,9

II

Тучность («степень улыбки окружающих»)

>40

III

Болезненная тучность («степень сочувствия окружающих»)

Примечание. ИМТ — индекс массы тела

• По преимущественной локализации жировой ткани различают ожирение общее (равномерное) и местное (локальная липогипертрофия). Разновидности местного ожирения:

† Женский тип (гиноидный) — избыток подкожного жира преимущественно в области бёдер и ягодиц.

† Мужской тип (андроидный) — накопление жира в области живота.

• По преимущественному увеличению числа или размеров жировых клеток выделяют:

† Гиперпластическое ожирение (за счёт преимущественного увеличения числа адипоцитов). Оно более устойчиво к лечению и в тяжёлых случаях требует хирургического вмешательства по удалению избытка жира.

† Гипертрофическое (за счёт преимущественного увеличения массы и размеров адипоцитов). Оно чаще наблюдается после 30 лет.

† Гиперпластическо‑гипертрофическое (смешанное). Нередко выявляется и в детском возрасте.

• По генезу выделяют первичное ожирение и вторичные его формы.

† Первичное (гипоталамическое) ожирение — результат расстройств системы регуляции жирового обмена (липостата) —самостоятельное заболевание нейроэндокринного генеза.

† Вторичное (симптоматическое) ожирение — следствие различных нарушений в организме, обусловливающих:

‡ снижение энергозатрат (и следовательно — расхода триглицеридов жировой ткани),

‡ активацию синтеза липидов — липогенеза (наблюдается при ряде заболеваний, например, при СД, гипотиреозе, гиперкортицизме).

Причины ожирения

• Причина первичного ожирения — нарушение функционирования системы «адипоциты — гипоталамус». Это является результатом дефицита и/или недостаточности эффектов лептина (по подавлению выработки нейронами гипоталамуса нейропептида Y, который повышает аппетит и чувство голода).

• Вторичное ожирение развивается при избыточной калорийности пищи и пониженном уровне энергозатрат организма. Энергозатраты зависят от степени активности (прежде всего физической) и образа жизни человека. Недостаточная физическая активность является одной из важных причин ожирения.

Патогенез ожирения

Выделяют нейрогенные, эндокринные и метаболические механизмы возникновения ожирения.

• Нейрогенные варианты ожирения

Нейрогенные (центрогенный и гипоталамический) механизмы ожирения представлены на рис. 10–3.

Рис. 10–3. Нейрогенные механизмы ожирения.

Центрогенный (корковый, психогенный) механизм — один из вариантов расстройства пищевого поведения (два других: неврогенная анорексия и булимия). Причина: различные расстройства психики, проявляющиеся постоянным, иногда непреодолимым стремлением к приёму пищи. Возможные механизмы:

‡ активация серотонинергической, дофаминергической, опиоидергической и других систем, участвующих в формировании ощущений удовольствия и комфорта;

‡ восприятие пищи как сильного положительного стимула (допинга), что ещё более активирует указанные системы — замыкается порочный круг центрогенного механизма развития ожирения.

Гипоталамический (диэнцефальный, подкорковый) механизм. Его причина — повреждение нейронов вентромедиального и паравентрикулярного ядер гипоталамуса (например, после сотрясения мозга, при энцефалитах, краниофарингиоме, метастазах опухолей в гипоталамус). Наиболее важные звенья патогенеза:

‡ Спонтанное (без выясненной причины) повышение синтеза и секреции нейропептида Y нейронами заднелатерального вентрального ядра гипоталамуса.

‡ Повреждение или раздражение нейронов вышеназванного ядра также стимулирует синтез и секрецию нейропептида Y и снижает чувствительность к факторам, ингибирующим синтез нейропептида Y (главным образом — к лептину).

§ Нейропептид Y стимулирует чувство голода и повышает аппетит.

§ Лептин подавляет образование стимулятора аппетита — нейропептида Y.

‡ Нарушение участия гипоталамуса в формировании чувства голода. Это чувство формируется при снижении ГПК, сокращении мышц желудка при эвакуации пищи и его опорожнении (чувство пищевого дискомфорта — «сосёт под ложечкой»). Информация от периферических чувствительных нервных окончаний интегрируется в нервных ядрах гипоталамуса, ответственных за пищевое поведение.

‡ В результате вышеназванных процессов усиливается выработка нейромедиаторов и нейропептидов, формирующих чувство голода и повышающих аппетит (ГАМК, дофамина, -эндорфина, энкефалинов) и/или нейромедиаторов и нейропептидов, формирующих чувство сытости и угнетающих пищевое поведение (серотонина, норадреналина, холецистокинина, соматостатина).

• Эндокринные варианты ожирения

Эндокринные механизмы ожирения — лептиновый, гипотиреоидный, надпочечниковый и инсулиновый — представлены на рис. 10–4.

Рис. 10–4. Патогенез ожирения.

Лептиновый механизм — ведущий в развитии первичного ожирения.

Лептин образуется в жировых клетках. Он уменьшает аппетит и повышает расход энергии организмом. Уровень лептина в крови прямо коррелирует с количеством белой жировой ткани. Рецепторы к лептину имеют многие клетки, в том числе — нейроны вентромедиального ядра гипоталамуса. Лептин подавляет образование и выделение гипоталамусом нейропептида Y.

Нейропептид Y формирует чувство голода, повышает аппетит, снижает энергорасходы организма. Между гипоталамусом и жировой тканью существует своего рода отрицательная обратная связь: избыточное потребление пищи, сопровождающееся увеличением массы жировой ткани, приводит к усилению секреции лептина. Это (посредством торможения выработки нейропептида Y) ослабляет чувство голода. Однако, у тучных людей этот регуляторный механизм может быть нарушен, например, из‑за повышенной резистентности к лептину или мутации гена лептина.

Липостат. Контур «лептин‑нейропептид Y» обеспечивает поддержание массы жировой ткани тела — липостата (или установочной точки организма в отношении интенсивности энергетического обмена). Помимо лептина, в систему липостата включены инсулин, катехоламины, серотонин, холецистокинин, эндорфины.

Гипотиреоидный механизм ожирения является результатом недостаточности эффектов йодсодержащих гормонов щитовидной железы. Это снижает интенсивность липолиза, скорость обменных процессов в тканях и энергетические затраты организма.

Надпочечниковый (глюкокортикоидный, кортизоловый) механизм ожирения активируется вследствие гиперпродукции глюкокортикоидов в коре надпочечников (например, при болезни или синдроме ИценкоКушинга). Под влиянием избытка глюкокортикоидов активизируется глюконеогенез (в связи с этим развивается гипергликемия), транспорт глюкозы в адипоциты, и гликолиз (происходит торможение липолитических реакций и накопление триглицеридов).

Инсулиновый механизм развития ожирения развивается вследствие прямой активации инсулином липогенеза в жировой ткани.

Другие механизмы. Ожирение может развиваться также при других эндокринопатиях (например, при дефиците СТГ и гонадотрофных гормонов). Механизмы развития ожирения при этих состояниях описаны в главе 27 «Эндокринопатии»).

• Метаболические механизмы ожирения

† Запасы углеводов в организме относительно малы. Они примерно равны их суточному приёму с пищей. В связи с этим выработался механизм экономии углеводов.

† При повышении в рационе доли жиров скорость окисления углеводов снижается. Об этом свидетельствует соответствующее уменьшение дыхательного коэффициента (отношение скорости образования CO2 к скорости потребления O2).

† Если этого не происходит (при расстройстве механизма ингибирования гликогенолиза в условиях высокой концентрации жиров в крови), активируется механизм, обеспечивающий повышение аппетита и увеличение приёма пищи, направленное на обеспечение необходимого количества в организме углеводов.

† В этих условиях жиры накапливаются в виде триглицеридов. Развивается ожирение.

Нарушения промежуточного жирового обмена

Одним из наиболее важных нарушений промежуточного обмена жира является усиление кетогенеза. Образующиеся в процессе β-окисления жирных кислот кетоновые тела занимают одно из центральных мест в системе обеспечения организма энергией, конкурируя в этом отношении с глюкозой. При невозможности использовать в качестве источника энергии глюкозу в организме усиливается липолиз и кетогенез. Такой кетоз может наблюдаться и в физиологических условиях (физическая работа, эмоциональное напряжение, поздние сроки беременности), но тогда он не бывает продолжительным, уровень кетоновых тел в крови не превышает 0,1 мМ, поскольку происходит быстрая утилизация в качестве энергетического сырья (физиологический кетоз). При патологическом кетозе производство кетоновых тел превышает утилизацию. Обычно это бывает при усилении липолиза в жировой ткани, когда печень не использует всех жирных кислот для синтеза триглицеридов и часть их включается в процесс β-окисления и кетогенеза. Таково происхождение кетоза при голодании, сахарном диабете. При значительном накоплении кетоновых тел в крови (свыше 0,1, а иногда до 20 мМ) возникает угрожающий жизни метаболический ацидоз (см. "Диабетическая кома").

Нарушения обмена жира в жировой ткани

Жировая ткань характеризуется интенсивным метаболизмом, обильным кровоснабжением и является своего рода саморегенерирующимся энергетическим аккумулятором. Накопление энергии в виде нейтральных жиров происходит в ней после каждого приема пищи, а мобилизация энергии — в любое время под влиянием импульсов, освобождающих жирные кислоты. Если в течение длительного времени накопление превышает расход энергии — появляется ожирение. В жировых клетках функционируют все три метаболических пути: гликолиз, пентозный цикл и цикл Кребса, в них осуществляется синтез жирных кислот, липогенез и липолиз. На рис. 14.7 показана роль нервной системы и гормонов в депонировании жира и липолизе. Липолиз активируется адреналином, кортикотропином и глюкагоном посредством циклической АМФ, активирующей триглицеридную липазу. Из гормональных факторов, обладающих жиромобилизующим эффектом, следует отметить соматотропин, тиро тропин и тироксин. Известно, что в период усиленного роста, а также при гипертиреозе наступает значительное похудание. Стимулирующее липолиз действие оказывает также выделенный из аденогипофиза β-липотропин.

Гликокортикоиды способствуют усилению мобилизации жира из жировой ткани и тормозят липогенез. Но это действие в организме может перекрываться другими эффектами данных гормонов: способностью вызывать гипергликемию и стимулировать секрецию инсулина, накопление гликогена в печени, что приводит к торможению мобилизации жира и его отложению в жировой ткани; способностью в больших дозах задерживать жиромобилизующее и стимулирующее окисление жиров действие соматотропина. Этим можно объяснить накопление жира в жировых депо при гипергликокортицизме (болезни и синдроме Иценко—Кушинга). Кроме того, при этом состоянии увеличено образование дигидрокортизона, который стимулирует пентозный цикл и превращение углеводов в жиры (С. М. Лейтес). Кортикотропин, стимулируя секрецию гликокортикоидов, может влиять на жировой обмен в том же направлении, но, помимо этого, обладает еще и экстраадреналовым жиромобилизующим действием.

Липогенез, т. е. анаболические процессы в адипоцитах, регулируется инсулином. Инсулин стимулирует синтез нейтральных жиров из глюкозы и жирных кислот, тормозит липолиз, снижая уровень сахара в крови, повышает аппетит. На рис. 14.8 показана роль инсулина и адреналина в метаболизме адипоцита и соотношении процессов липогенеза и липолиза.

Гормоны влияют на метаболизм адипоцитов через посредство специфических рецепторов. Дефицит инсулиновых рецепторов может быть причиной резистентности тканей к инсулину и индуцировать гиперинсулинизм. При ожирении наблюдается не только гиперинсулинизм, но и снижение секреции глюкагона, соматотропина, повышение секреции кортизола и снижение реакции жировой ткани на катехоламины.

Роль нервной системы в регуляции жирового обмена подтверждается данными о том, что длительное эмоциональное напряжение приводит к мобилизации жира из жировых депо и похуданию. Такой же эффект наблюдается при раздражении симпатических нервов. Десимпатизация препятствует выходу жира из депо. Раздражение парасимпатических нервов сопровождается отложением жира. Синтез и распад триглицеридов регулируется также уровнем глюкозы в крови. При избытке глюкозы часть НЭЖК, как второй источник энергии, изымается из обращения и откладывается в жировых депо; при дефиците глюкозы из депо мобилизуются жиры. Этот процесс саморегуляции является одним из звеньев в сложной системе регуляции жирового обмена, осуществляемого нервной и эндокринной системами.

Ожирение — избыточное отложение жира в жировой ткани. Среди

взрослого населения экономически развитых стран у 30 — 60% масса тела превышает норму на 20% и более. Ожирение чаще встречается у женщин и в возрастных группах старше 50 лет.

Этиология. Ожирение является результатом расстройства гомеостаза энергетического обмена. В его возникновении принимают участие внутренние и внешние факторы, которые меняют поведение человека в отношении питания.

Факторы, регулирующие поведение человека в отношении потребления пищи, определяются генетически-конституциональными особенностями индивидуума, а также влияниями внешней среды. Среди последних определенную роль играет питание матери в предродовой период; ребенка — в грудном возрасте и раннем детстве; типы безусловных рефлексов, связанных с питанием; семейные, национальные традиции; уровень материальной обеспеченности и доступность пиши; состояние двигательной активности.

Повышенное потребление пищи является одной из основных причин ожирения. Реже причиной ожирения бывают первичные нарушения нервно-гормональной регуляции, изменения в обмене адипоцитов или генетические факторы.

По этиологии выделяют ожирение первичное (конституциональное) — 55 — 65% и вторичное (симптоматическое), оно подразделяется на гормональное (около 20%) и церебральное (16 — 20%). Несомненна роль наследственности в ожирении. Наследоваться могут структура и функция систем, регулирующих алиментарное поведение, особенности метаболизма адипоцитов и миоцитов. Имеются наблюдения о том, что ожирение развивается в нескольких поколениях одной и той же семьи. Отмечена высокая конкордантность по этому признаку у однояйцовых близнецов. Однако эти данные не являются прямыми доказательствами роли наследственности в ожирении, поскольку здесь нельзя исключить влияние окружающей среды, привычек, касающихся видов пищи, а также образа жизни. Более убедительные данные получены в эксперименте.

Экспериментальное ожирение. Имеется несколько линий мышей, у которых ожирение проявляется как генетически обусловленное нарушение, обычно передающееся аутосомно-рецессивно.

У мышей с наследственным ожирением отмечаются гипергликемия, гиперлипемия, усиление липогенеза, гиперинсулинемия. У них обнаружены повышение чувствительности к гипергликемическому действию гормона роста и глюкагона, устойчивость к инсулину, снижение числа инсулиновых рецепторов в адипоцитах. Ферментативные изменения в гепатоцитах указывают на увеличенное использование фосфатоглицерола для липогенеза. Описан штамм желтых мышей, у которых сопряжены два свойства: желтая окраска шерсти и предрасположение к ожирению. Мыши характеризуются повышенным потреблением углеводов, резистентностью к инсулину при нормальной гликемии. У другой линии мышей ожирение и гипергликемия, появляющиеся на втором месяце жизни, сочетаются с гиперхолестеринемией, повышением чувствительности к действию гормона роста и глюкагона. У этих животных обнаруживается гипертрофия островков поджелудочной железы и гиперинсулинемия. Описана наследственная форма ожирения у мышей, сочетающаяся с аденомой гипофиза и гипертрофией панкреатических островков.

Нарушение соотношения между приходом и расходом энергии может быть вызвано воздействием на гипоталамические центры, с которыми связано ощущение голода и сытости. Электролитическое разрушение вентромедиальных ядер — "центра сытости", угнетающе действующего на "пищевой центр", у крыс, кошек и обезьян вызывает гиперфагию с последующим развитием гипоталамического ожирения. Такой же эффект вызывает ауротиоглюкоза, избирательно поражающая вентромедиальные ядра. Экспериментальное гипоталамическое ожирение является аналогом диэнцефального ожирения у людей, которое может развиться в результате перенесенного энцефалита, менингита, травмы головного мозга.

Гормональное ожирение в эксперименте развивается после удаления щитовидной железы, а также после введения инсулина с глюкозой. Ожирение после кастрации связано с развивающейся в результате компенсации гормональных нарушений гипертрофией коры надпочечников и гиперинсулинизмом. При этом активируются процессы глюконеогенеза и перехода углеводов в жир. Возможно, такое же происхождение имеет ожирение у женщин в период климакса.

Экзогенное ожирение моделируется ограничением двигательной активности животных и перекармливанием, особенно углеводной пищей.

Патогенез. В развитии ожирения имеют значение три основных патогенетических фактора: повышенное поступление пищи, несоответствующее энергетическим затратам; недостаточная мобилизация жира из депо; избыточное образование жира из углеводов (С. М. Лейтес).

Избыточное потребление пищи, вызванное усилением аппетита, может быть обусловлено повышенной возбудимостью "пищевого центра", расположенного в переднебоковых ядрах задней гипоталамической области. Изменения, на которые реагирует пищевой центр, могут быть причиной длительного пищевого возбуждения, и вследствие этого — алиментарного ожирения: Так, все состояния, которые стойко понижают уровень глюкозы в крови, например, некоторое повышение функции панкреатических островков, сопровождаются чувством голода, которое обусловливает возможность переедания.

В деятельности пищевого центра имеет также значение сигнализация, Поступающая с рецепторов пищевого канала. Определенная степень |астяжения желудка тормозит деятельность пищевого центра. При понижении чувствительности нервных окончаний в стенке желудка |орможение центра развивается только при чрезмерном растяжении желудка, что также создает предпосылки к перееданию и ожирению. Нарушение баланса энергии возможно и при переходе от физического труда к образу жизни, не требующему большой физической нагрузки, если прежняя степень возбудимости пищевого центра сохранена. При нормальной функции пищевого центра ожирение может быть связано с нарушением мобилизации жира из жировых депо в качестве источника энергии.

Как было сказано выше, регуляция процесса мобилизации и отложения жира осуществляется нервной и эндокринной системами. Так, снижение тонуса симпатической нервной системы может вызвать задержку мобилизации и выхода жира из жировой ткани. У кошек при односторонней перерезке чревного нерва в случае голодания количество жира в околопочечной клетчатке больше на денервированной стороне.

При болезни Барракера—Симонса — прогрессивной липодистрофии, связанной с поражением центров промежуточного, спинного мозга и узлов симпатического ствола, — наблюдается исчезновение жира из жировой ткани на голове и грудной клетке с одновременным отложением его в нижней половине тела.

Нарушение мобилизующего жир влияния гормонов наблюдается при патологии гипофиза, щитовидной железы, надпочечных и половых желез.

У людей может наблюдаться ожирение, характеризующееся гиперинсулинизмом, резистентностью к инсулину и гипергликемией. Считают, что основные повреждения при этом находятся на уровне клеток-мишеней. Они связаны с уменьшением числа рецепторов для инсулина, обусловливающим резистентность к инсулину и компенсаторный гиперинсулинизм.

В настоящее время в патогенезе ожирения учитываются особенности и самой жировой ткани, число и величина жировых клеток — адипоцитов. Количество жировых клеток — фактор генетически обусловленный, а величина их зависит от возраста, пола, воздействия регуляторных и метаболических факторов. Число жировых клеток относительно постоянно и с возрастом не меняется. У женщин оно больше, чем у мужчин. У молодых людей число жировых клеток составляет 3 • 1010, содержание жира в адипоците — 0,6 мкг, общее количество жира в организме — примерно 18 кг. У лиц с небольшой физической активностью и ожирением эти величины соответственно составляют: 4,6 • 1010; 1,1 мкг и 50 мг. Встречаются случаи ожирения, когда общее количество жира составляет более 70 кг, при нормальном числе адипоцитов, однако масса одной клетки равна 1,6 мкг. В других случаях масса адипоцитов остается нормальной, а их число достигает 9 • 1010. Общее количество жира может составлять 100 кг и более.

Патогенетическая классификация ожирения, основанная на критерии величины и количества адипоцитов, выделяет два типа ожирения: гипертрофическое и гиперпластическое.

Гипертрофическое ожирение зависит от количества жира в каждом адипоците, что взаимосвязано с повышенной концентрацией инсулина, гиперлипемией, снижением толерантности к глюкозе. Нередко эта форма ожирения осложняется развитием в молодом возрасте атеросклероза и диабета.

Гиперпластическое ожирение связано с увеличением количества адипоцитов, которое зависит от генетических факторов или влияний, регулирующих морфогенез жировой ткани в эмбриональном периоде и раннем детстве.

Ожирение неблагоприятно отражается на жизнедеятельности организма. В молодом возрасте, когда адаптационные возможности выражены лучше, отрицательное действие ожирения проявляется в меньшей степени, а с возрастом количество осложнений, связанных с ожирением, увеличивается. Смертность у страдающих ожирением в возрасте 20 — 24 лет на 3% выше, чем у лиц с нормальной массой тела, у лиц в возрасте 40 — 55 лет она выше на 50%.

В связи с отложением большого количества жира и увеличением нагрузки на большинство жизненно важных органов далеко зашедшее ожирение вызывает ряд функциональных изменений в них, а также нарушения метаболизма. Прежде всего нарушается обмен в жировой ткани, где повышается скорость синтеза триглицеридов и липопротеидов, нарушается способность к мобилизации жировых резервов, наблюдается гиперлипемия, повышение уровня свободных жирных кислот, гиперхолестеринемия.

Нарушения в углеводном обмене выражаются в ограничении обмена глюкозы, повышении содержания гликогена в печени. В мышечной ткани нарушается утилизация глюкозы, несмотря на гиперинсулинизм. Дыхательный коэффициент, равный 0,7 — 0,74, свидетельствует о том, что в качестве источника энергии используются в основном жирные кислоты.

Отложение жира в миокарде значительно снижает сократительную функцию сердца. Ожирение зачастую сопровождается атеросклерозом, повышением артериального давления, свертываемости крови, развитием тромбоза. При этом ухудшается легочная вентиляция, уменьшается жизненная емкость легких, появляется склонность к застою крови и развитию в дыхательных путях хронического воспаления. Одышка возникает даже при небольшой физической нагрузке. Появляется циркуляторная и дыхательная гипоксия.

Сочетание ожирения с сахарным диабетом возникает в случае инсулинрезистентности, связанной с уменьшением числа рецепторов к инсулину на поверхности жировых клеток. Компенсаторная гипертрофия и гиперплазия панкреатических островков, обеспечивая повышенную секрецию инсулина (гиперинсулинизм) для преодоления резистентности, со временем сменяется истощением. В этом случае полагают, что ожирение является этиологическим фактором сахарного диабета.

НАСЛЕДСТВЕННЫЕ НАРУШЕНИЯ ЖИРОВОГО ОБМЕНА

Известно несколько наследственных нарушений жирового, липоидного обменов, которые связаны между собой. К редко встречающимся относится эссенциальная гиперлипемия.

Она обусловлена гиперлипопротеидемией III типа, которая характеризуется наличием в плазме ненормальных липопротеидов очень низкой плотности, содержащих особенно в большом количестве триглицериды. Предполагается, что генетический дефект приводит к блокаде поздних стадий катаболизма липопротеидов очень низкой плотности. Наследуется как признак неполной доминантности, сочетается с ожирением.

Гиперлипопротеидемия IV типа или семейная гипербетали-попротеидемия. Повышенное количество триглицеридов синтезируется в печени, эритроцитах. При этом отчетливо проявляется индукция синтеза жиров углеводами и тоже сопровождается ожирением.

Среди наследственно обусловленных нарушений обмена холестерина наиболее распространенной является семейная гиперхолестеринемия. Она проявляется в виде ксантоматоза, атероматоза и развитием в молодом возрасте ишемической болезни сердца. В плазме крови повышается концентрация липопротеидов низкой плотности (ЛПНП). Наследование болезни аутосомно-доминантное; гомозиготы поражаются более тяжело, нередко инфаркт миокарда возникает в детском возрасте; генетический дефект — отсутствие на клеточных мембранах рецепторов для ЛПНП. Функция рецептора состоит в связывании ЛПНП и введении их в клетку, где они распадаются с освобождением свободного холестерина. Эта аномалия обмена предрасполагает к ишемической болезни сердца. Первые приступы стенокардии в большинстве случаев развиваются до 30-летнего возраста, ишемическая болезнь — к 50 годам, и половина страдающих этой болезнью умирают в возрасте до 60 лет.

Липидозы относятся к болезням накопления, обусловленных дефектами специфических лизосомальных гидролаз.

Болезнь Вольмана — редкое аутосомно-рецессивное заболевание, которое в первые недели жизни проявляется рвотой, диареей со стеатореей, гепатоспленомегалией и двусторонним кальцинозом надпочечных желез. Дети умирают в возрасте до 6 мес. Генетический дефект — отсутствие кислой липазы лизосом, обусловливающее накопление эфиров холестерина в лизосомах печени, селезенки, надпочечных желез, гемопоэтической системы и тонких кишок.

Болезнь Шюллера — Кристиана характеризуется отложением в клетках грануляционной ткани, разрастающейся в костях и в большинстве внутренних органов, холестерина и его эфиров. Характерны при этом деструктивные изменения в костях.

При некоторых патологических состояниях наблюдается избыточное отложение в тканях фосфолипидов. Все они наследуются по аутосомно-рецессивному типу. Так, при болезни Гоше в связи с отсутствием гликоцереброзидазы цереброзиды откладываются в макрофагальных клетках селезенки, печени, лимфатических узлов и костного мозга. Ведущими симптомами заболевания являются спленомегалия, увеличение печени, а также изменения в костях, проявляющиеся в виде остеопороза.

При болезни Ниманна — Пика наблюдается отложение фосфатида сфингомиелина в клетках различных органов. Генетический дефект — дефицит сфингомиелиназы. Болезнь проявляется резким увеличением печени и селезенки, замедлением психического развития ребенка, появлением слепоты и глухоты. Чаще всего дети погибают в возрасте до 2 лет.

Амавротическая семейная идиотия является результатом отложения ганглиозидов в клетках нервной системы, что сопровождается атрофией зрительных нервов, а также слабоумием.

Регуляция и нарушения липидного обмена

Путипревращения липидов в организме представляютсобой сложную совокупность большого числа химических pеакций. Их скорость и направление определяются, прежде всего, доступностью субстратов, наличием ферментов и кофакторов, активностью энзимов и удалением конечных продуктов из среды, где совершаются эти реакции.

Доступность субстрата — это наиболее простой способ регуляции обмена веществ. Липиды пищи, например, поступая в организм в избытке, стимулируют в клетке реакции катаболизма этих соединений и ингибируют биосинтез липидов из углеводов и белков. При голодании, вследствие недостатка субстратов (азотистые основания, глицерин, глицерофосфат, АТФ и др.), скорость биосинтеза жиров снижается. Если в период голодания в организм ввести углеводы, то последние в клетках начнут окисляться с большей скоростью, в результате в цитоплазме клеток начнет повышаться содержание ацетил-КоА, глицерофосфата, НАДФН2, АТФ и других компонентов, необходимых для образования жиров. Помимо углеводов скорость биосинтеза липидов повышают белки, принятые с пищей в избытке.

Из сказанного становится совершенно очевидно, что вве­дением в организм с пищей различных субстратов (продук­тов) мы можем регулировать скорость окисления и биосинтезaлипидов, переключать метаболизм в клетке с одного вида обмена на другой в благоприятном для органов и тканей на данный момент направлении.

Регуляция скорости обмена липидов доступностью кофакторов (КоА, НАД, НАДФ и др.), витаминов (биотина, кар­нитина и др.) осуществляется аналогичным образом. Например, регуляция ско­рости окисления и биосинтеза липидов в огромной степени зависит от проницаемости клеточных мембран, наличия и активности молекул, обеспечивающих их перенос (например, наличия карнитина, АТФ, необходимых для транспорта выс­ших жирных кислот через мембрану митохондрий).

Регуляция скорости обмена липидов активностью ферментов — это наиболее сложный и трудный для понимания процесс. Осуществляется этот способ регуляции по двум направлениям. Быстрый способ регуляции (действует уже через несколько минут или даже секунд после поступления сигнала) связан с изменением физико-химических свойств среды, окружающей фермент (рН, ионной силы раствора, наличия субстратов, активаторов и ингибиторов фермента и других причин). Эти изменения немедленно отражаются на структуре фермента, его активного и аллостерического центров. Например, биосинтез высших жирных кислот лимитируется активностью ацетил- КоА-карбоксилазы, аллостерический фермент, который катализирует образование малонил-КоА. Положительными модуляторами его являются цитрат и АТФ. Накопление цитрата в клетке служит сигналом, что цикл трикарбоновых кислот «перегружен топливом», и избыток ацетил-КоА необходимо направить на биосинтез жирных кислот, что осуществляется немедленно. Ингибитором этого фермента являются, преждевсего, сами молекулы высших жирных кислот.

Более медленный способ регуляции метаболизма липидов (действует через несколько часов или даже дней после поступления сигнала) связан с увеличением или снижением содержания в клетках молекул ферментов за счет изменения скорости их синтеза или распада. Установлено, что значительное влияние на этот процесс оказывают гормоны и, прежде всего, стероидные, а также инсулин и некоторые препараты, используемые в медицине. Инсулин стимулирует анаболизм липидов; глюкагон, адреналин, липотропин, глюкокортикоиды, тиреоидные гормоны активируют катаболизм депонируемых форм липидов.

С нарушением обмена липидов и его регуляцией связано разви­тие большого числа заболеваний. Нарушения обмена липидов возможны уже на этапе их переваривания и всасывания. Это может быть обусловлено дефицитом желчных кислот и, как следствие, нарушением эмульгирования и всасывания липидов. Кроме того, дефицит и недостаточная активность ферментов приводит к нарушению переваривания липидов и вызывает стеаторею. Следствием нарушения переваривания и всасывания липидов являются дефицит незаменимых ВЖК и витаминов А, Д, Е, К, Q.

В лабораторной диагностике заболеваний, связанных с нарушением обмена липидов и липопротеинов, прежде всего ожирения, атеросклероза и ишемической болезни сердца, важная роль принадлежит анализу в сыворотке крови содержания общих липидов, триглицеридов, холестерина, фосфолипидов и, что наиболее важно, изменению отдельных классов липопротеинов. У пациентов можно обнаружить повышение в сыворотке крови содержания общих липидов (гиперлипидемия), триглицеридов (гипертриглицеридемия), холестерина и его эфиров (гиперхолестеринемия), липопротеинов (гиперлипопротеинемия), фиксируются также при этом различные изменения в соотношении содержания отдельных классов липопротеинов (дислипопротеинемия). Реже у пациентов приходится наблюдать понижение уровня липидов в сыворотке крови (гиполипидемия) и, прежде всего, липопротеинов высокой плотности (ЛПВП) и фосфолипидов,

Изменение соотношения различных классов липопротеинов в сыворотке крови называют дислипопротеинемиями. Согласно Фредриксону различают 5 типов дислипопротеинемий, которые характеризуются преобладанием в сыворотке крови какого-либо одного или нескольких классов липопротеинов.

Установлено, что ЛПОНП и ЛПНП — атерогенные липопротеины, а ЛПВП — антиатерогенные липопротеины. Фосфолипиды и ЛПВП — это антиатерогенные липиды и липопротеины. При снижении их содержания в крови у пациента повышается риск развития атеросклероза и ИБС. При атеросклерозепроисходит образование на стенках артерий так называемых атеросклеротических бляшек, представляющих собой в основном отложения холестерина. Атеросклеротические бляшки разрушают клетки эндотелия сосудов, и в таких местах часто образуются тромбы. Одна из основных причин развития атеросклероза – нарушение баланса между поступлением холестерина с пищей, его синтезом и выведением из организма. Возникновение данного заболевания также связано с повышением в плазме крови содержания атерогенных липопротеинов (ЛПНП и ЛПОНП), богатых холестерином. Размеры ЛПНП и ЛПОНП соизмеримы с межклеточными промежутками, и при повышении их содержания в сыворотке крови, они накапливаются в интиме сосудов. Это ведет, вначале, к липоидозу, а затем к атеросклерозу и ИБС. ЛПВП, наоборот, богаты антиатерогенными фосфолипидами. По размеру ЛПВП (≈ 50% белка) значительно меньше, чем ЛПНП и ЛПОНП. Они относительно легко проникают в межклеточные пространства, извлекают из клеток (в том числе, из стенки сосуда) холестерин и поэтому являются антиатерогенными. В этом механизме необходимыми участниками являются фосфолипиды и фермент лецитинхолестеринацилтрансфераза (ЛХАТ). Следовательно, генетические дефекты ЛХАТ, аполипопротеинов ЛПВП, рецепторов к ЛПНП – причины атеросклероза различной степени тяжести, вплоть до летального исхода в раннем детском возрасте. К контролируемым факторам риска относятся: снижение количества фосфолипидов, увеличение количества холестерина, повреждение стенки различными факторами.

Высокий уровень липидов в сыворотке крови может быть у практически здоровых лиц и наблюдается после приема с пищей избытка высококалорийных продуктов или, например, после мобилизации эндогенных ресурсов организма при стрессе. Это физиологически обусловленные гиперлипидемии. В зависимости от механизма нарушения обмена липидов следует различать гипер­липидемии или гиперлипопротеинемии первичные и вторичные.

Первичные гиперлипидемии(наследственные) связаны с дефектами в генах. Среди них следует различать полигенную гиперхолестеринемию. Ее развитие обусловлено наличием аномалий в нескольких генах, несущих информацию о метаболизме холестерина. Наиболее подробно изучена гиперлипопротеинемия, обусловленная дисфункцией рецепторов и, прежде всего, недостаточностью рецепторов для ЛПНП. В составе этих липопротеиновых комплексов перемещается от одного органа к другому основная часть холестерина. Если число рецепторов ЛПНП на клетках снижается, то в плазме крови возрастает содержание ЛПНП и холестерина. Отмечено, что у гетерозиготных носителей аномального гена число рецепторов для ЛПНП может снижаться почти вдвое. Оказалось, что во столько же раз в плазме крови при этом возрастает содержание холестерина. В результате степень риска заболеть атеросклерозом и ИБС у таких людей возрастает в 10—50 раз. Когда же рецепторы к ЛПНП полностью отсутствуют (у гомозиготных и носителей аномального гена), содержание холестерина в плазме крови повышается еще больше. Такие больные, в связи с ранним развитием атеросклероза и ИБС, редко доживают до 20 лет.

Вторичные гиперлипидемии— это, как правило, приобретенные изменения в обмене и содержании липидов. Они могут быть обусловлены алиментарными факторами, наличием ряда заболеваний и, прежде всего, могут быть результатом ожирения, злоупотребления алкоголем, наличия сахарного диабета, нефротического синдрома, гипотиреоза, панкреатита,печеночной недостаточности, закупорки желчных протоков и других причин.

Ожирение - состояние, когда масса тела (за счет накопления жира в адипоцитах) превышает норму на 20%. Первичное ожирение может быть обусловлено генетическими, гормональными, метаболическими нарушениями, потреблением избытка калорий в питании, гиподинамией (пониженный уровень физической активности). Ген "ожирения" в адипоцитах стимулирует образование белка лептина, который регулирует потребление пищи и уровень жировой массы. Снижение уровня лептина, нарушение его структуры или снижение количества рецепторов к нему служат сигналом недостаточного количества жиров в организме, что приводит к возрастанию аппетита и увеличению массы тела.

Вторичное ожирение- чаще всего результат эндокринного (гипотиреоз, гипогонадизм, синдром Иценко-Кушинга) и других заболеваний.

Желчнокаменная болезнь- патологический процесс, при котором в желчном пузыре образуются камни, основу которых составляет холестерин. Затем он пропитывается билирубином, белками и солями кальция, формируя жесткие конгломераты. В норме гидрофобные молекулы холестерина удерживаются в растворе желчи благодаря наличию в ней желчных кислот и фосфолипидов (образуются мицеллы). У больных желчнокаменной болезнью повышены синтез и содержание холестерина, но снижены синтез и количество желчных кислот, т.е. нарушено в желчи соотношение холестерол/желчные кислоты. Холестерин начинает осаждаться в желчном пузыре, образуя вначале вязкий осадок, который постепенно становится более твердым.

Патология липидного обмена з а н я т и е № 2

Тема: НАРУШЕНИЯ ЛИПИДНОГО ОБМЕНА. АТЕРОСКЛЕРОЗ. ОЖИРЕНИЕ. ЖИРОВАЯ ДИСТРОФИЯ ОРГАНОВ. ЖЕЛЧНО-КАМЕННАЯ БОЛЕЗНЬ

ЦЕЛЬ ЗАНЯТИЯ: Изучить причины и механизмы нарушений липидного обмена, метаболические предпосылки в развитии ожирения, атеросклероза и жировой дистрофии органов, желчно-каменной болезни.

К о н т р о л ь н ы е в о п р о с ы

  1. Биологическая роль липидов.

  2. Причины нарушений расщепления и всасывания липидов в желудочно-кишечном тракте. Стеаторея.

  3. Роль легких и печени в липидном обмене. Возможные нарушения.

  4. Характеристика липопротеидов плазмы крови.

  5. Гиперлипидемии. Виды (классификация ВОЗ).

  6. Патология межуточного жирового обмена. Гиперкетонемия.

  7. Нарушения обмена холестерина. Гиперхолестеринемия. Метаболические предпосылки развития атеросклероза. Роль дисфункции эндотелия.

  8. Ожирение. Причины. Виды и механизмы развития. Последствия.

  9. Жировая инфильтрация и дистрофия органов. Причины и механизмы развития. Значение липотропных факторов.

  10. Понятие о перекисном окислении липидов и последствиях его активации.

Патология липидного обмена

К липидам относятся соединения, обладающие гидрофобными свойствами и объединяемые обменнми процессами: жиры, жирные кислоты, стерины и стероиды (холестерин), фосфолипиды, гликолипиды и др. сложные липиды, простагландины.

С патологией липидного обмена связаны: атеросклероз, желчнокаменная болезнь, ожирение и исхудание, кетоацидотическая кома при сахарном диабете, жировая дистрофия органов.

Наряду с белками и углеводами жиры в организме являются энергетическим и пластическим материалом. При нормальных условиях питания до 40% общего числа потребляемых организмом калорий обеспечивают жиры, а при мышечной нагрузке это значение возрастает до 60-80%. Липиды являются обязательным составным компонентом сбалансированного питания и организм нуждается в ежедневном поступлении около 90 г жиров.

Одну треть потребляемого жира должен составлять растительный жир, содержащий полиненасыщенные жирные кислоты. Их минимальная суточная потребность 4-8 г. При их отсутствии в пище, развивается дерматит, усиливается атеросклероз, замедляется рост организма у детей, снижается ово- и сперматогенез. Потребность тканей в них связана с участием последних в осуществлении некоторых важных функций:

  1. они служат предшественниками гормоноподобных веществ-простагландинов;

  2. поддерживают жидкостное состояние, присущее липидам клеточных мембран в норме;

  3. усиливают кишечную адсорбцию аминокислот и сахаров;

  4. входят в состав фосфолипидов, которые предотвращают отложение холестерина и других липидов в стенках кровеносных сосудов (Рис 2).

Таблица. Основные липиды биологических мембран

Основные липиды мембран

Процент содержания (диапазон)

Фосфоглицериды

50-90 %

Фосфатидилхолин

40-60 %

Фосфатидилэтаноламин

20-30 %

Фосфатидилсерин

5-15 %

Кардиолипин

0-20 %

Фосфатидилнозитол

5-10 %

Сфингомиелин

5-20 %

Холестерол

0-10 %

Все разнообразные проявления нарушений метаболизма липидов организма можно объединить в следующие группы: нарушение

  1. переваривания и всасывания пищевого жира;

  2. липопротеидного состава плазмы крови;

  3. депонирования жира и обмена в жировой ткани;

  4. обмена фосфолипидов;

  5. обмена холестерина;

  6. перекисного окисления липидов.


Смотрите также

От вздутия живота народные средства

От Вздутия Живота Народные Средства

Народные средства от вздутия живота Вздутие живота или метеоризм характеризуется излишним скоплением газов в кишечнике, которое может вызывать болезненные… Подробнее...
Заболевания вызывающие тошноту, диарею и повышенную температуру тела

Температура Понос Тошнота

Заболевания вызывающие тошноту, диарею и повышенную температуру тела Каждый хоть однажды сталкивался с такими неприятными симптомами, как температура, понос,… Подробнее...
Почему у ребенка зеленый понос

Понос Зеленый У Ребенка

Почему у ребенка зеленый понос Появление у ребенка зеленого поноса часто вводит в панику его родителей. Не зная причину появления поноса зеленого цвета, в… Подробнее...
Какие болезни сопровождаются поносом и рвотой

Температура Понос Рвота У Ребенка

Какие болезни сопровождаются поносом и рвотой У маленького ребенка еще только формируется защитная система организма, и… Подробнее...
Лекарство от вздутия живота

Лекарство От Вздутия Живота

Чем снять вздутие живота Вздутие живота, как его называют врачи, метеоризм, — неприятная, а главное, исключительно… Подробнее...
Причины поноса после еды

После Еды Сразу Иду В Туалет По Большому - Понос

Причины поноса после еды Некоторый жалуются, что после еды сразу идут в туалет по-большому из-за поноса. Такая… Подробнее...
Понос после арбуза

Понос После Арбуза

Какие продукты могут вызвать понос Расстройство пищеварения может возникнуть не только как реакция на отравление, но и… Подробнее...
Первая помощь ребенку при рвоте

Рвота У Ребенка Без Температуры И Поноса Что Делать - 3 Года

Первая помощь ребенку при рвоте Дети до 5 лет являются самой восприимчивой к различным вирусам и бактериям группой.… Подробнее...