Вздутие электролитических конденсаторов на материнской плате


Вздутые конденсаторы на материнской плате

Компьютерная материнская плата состоит из многих встроенных компонентов, отвечающих за работоспособность всего компьютера. На ней находится и несколько конденсаторов, которые тоже являются важными звеньями в этой цепи. Сегодня мы бы хотели рассказать о причинах и последствиях вздутия этих элементов, а также наглядно продемонстрировать процедуру их замены без помощи специалистов.

Читайте также: Из чего состоит материнская плата

Роль конденсаторов в материнской плате

Электрический конденсатор во всех приборах работает по одному и тому же принципу, однако выполняет разную роль. В системной плате он отвечает за подавление и сглаживание различных электрических помех, возникающих достаточно часто, а также выравнивает напряжение, обеспечивая стабильную работу сети. Конденсатор имеет определенную емкость, которая и определяет максимальное количество накапливаемой в нем энергии. Она сохраняется длительное время и отдается только при необходимости, как раз и обеспечивая нужную функцию, например, создание крупного электрического импульса в пределах используемой системы.

Читайте также: Роль материнской платы в компьютере

Причины вздутия конденсаторов

Каждое устройство имеет свой срок работы, а конденсатор — элемент несложный, состоящий всего из нескольких компонентов, поэтому его срок службы достаточно большой. Почти все неполадки возникают именно из-за плохого качества, но иногда влияют и внешние раздражители. Самая распространенная причина — выкипание или испарение электролита, что происходит из-за нескольких факторов:

  • Плохая герметичность конденсатора. Никто не исключал брак на производстве, из-за чего некоторые элементы имеют плохую герметичность, что провоцирует быстрое испарение или протекание электролита. Вытекание можно заметить невооруженным глазом, обратив внимание, что на плате скапливается жидкость в крошечных количествах. После достижения критического минимума вещества и происходит вздутие.
  • Высокие температуры внешней среды. Как известно, при работе компьютера выделяется достаточно большое количество тепла, идет оно от всех подключенных комплектующих, но в разных количествах. При повышении температуры выше 45 градусов начинается испарение жидкого вещества, а также может плавиться и сам конденсатор, что в скором времени вызовет его взрыв или вздутие.
  • Высокие температуры внутренней среды. В других случаях проблема возникает именно из-за высоких температур внутри элемента. Чаще всего она возникает из-за несоблюдения полярности (плюса и минуса), некачественной сборки или постоянных перепадах энергии в самой цепи, например, из-за плохого либо недостаточно мощного блока питания.
  • Произвольное вытекание электролита. Плохая сборка конденсатора грозит и произвольным вытеканием электролита через нижнюю или верхнюю его часть. Тогда на плате образуется жидкость коричневого или желтого цвета, а на самом элементе появляется ржавчина. Обычно при такой неполадке не происходит вздутия, но прибор уже считается нерабочим и подлежит замене.

Следствия вздутия конденсаторов

Любая поломка электрической цепи нуждается в срочной замене, ведь даже незначительный компонент может привести к полному отказу функционирования или более серьезным проблемам. В случае с конденсаторами материнская плата может продолжать стабильно работать некоторое время, если только не вздулись все присутствующие элементы. Однако часто возникает непроизвольное отключение компьютера, неполадки с запуском или другие сбои. Если вовремя не исправить поломку, из-за перепада энергии из строя может выйти не только системная плата, но и все подключенные к ней комплектующие.

Самостоятельная замена конденсаторов на материнской плате

Самостоятельную замену рассматриваемых деталей рекомендуется проводить только тем пользователям, кто ранее уже имел дело с паяльником и хорошо владеет им. Ведь задача стоит очень трудная и неправильное выполнение действий может привести к более серьезным последствиям. Если вы уверены в своих силах, рекомендуем ознакомиться с отдельным нашим материалом по осуществлению этой операции, где автор наглядно описал весь процесс, учитывая каждую деталь. В противном случае лучше немедленно обратиться в сервисный центр, чтобы заменой занялись профессионалы.

Подробнее: Инструкция по замене конденсаторов на материнской плате

Предотвращение вздутия конденсаторов

Существует несколько правил, придерживаясь которых, можно избежать появления вздутия элементов. Конечно, они окажутся неэффективными при использовании некачественных конденсаторов, однако все же на них стоит обратить внимание:

  1. При замене конденсаторов подбирайте только подходящие по емкости и напряжению модели, учитывая при монтаже полярность.
  2. Следите за температурой внутри корпуса: сам конденсатор не должен нагреваться более 45 градусов, а это значит, что другие комплектующие тоже должны оставаться более-менее теплыми.
  3. Читайте также: Измеряем температуру компьютера

  4. Если наблюдаются перебои электросети, используйте бесперебойные источники питания, обеспечив стабильность системы.
  5. Читайте также: Выбираем источник бесперебойного питания для компьютера

  6. Приобретайте только качественные блоки питания, которые не вызывают резких электрических импульсов.
  7. Читайте также: Как выбрать блок питания для компьютера

Выше вы были ознакомлены с основной информацией о конденсаторах на материнской плате и причинах их вздутия. Очень важно вовремя обнаружить эту проблему и не оставлять ее решение на потом. Оперативное исправление поломок электрической цепи позволяет избежать возникновения более серьезных проблем, которые уже никак не решить собственными силами.

Читайте также:
Основные неисправности материнской платы
Руководство по диагностике материнской платы компьютера

Мы рады, что смогли помочь Вам в решении проблемы.
Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.
Помогла ли вам эта статья?
ДА НЕТ

Руководство по замене электролитического конденсатора на MLCC | Технические примечания | Многослойные керамические чип-конденсаторы

Руководства по решениям

Руководство по замене электролитического конденсатора на MLCC Обзор

В электронных устройствах используются несколько конденсаторов. Алюминиевые и танталовые электролитические конденсаторы используются в приложениях, где требуется большая емкость, но миниатюризация и уменьшение профиля этих продуктов затруднительны, и они имеют значительные проблемы с самонагревом из-за пульсаций тока.

Однако, благодаря достижениям в области большой емкости MLCC в последние годы, стало возможным заменить различные типы конденсаторов, используемые в цепях питания, на MLCC.

Переход на MLCC дает различные преимущества, такие как небольшой размер благодаря миниатюрному и низкопрофильному форм-фактору, контроль пульсации, повышенная надежность и длительный срок службы. Однако функция MLCC с низким ESR (эквивалентным последовательным сопротивлением) может иметь неблагоприятные эффекты, которые могут привести к аномальным колебаниям и антирезонансу, поэтому требуется осторожность.

Руководство по замене электролитического конденсатора на MLCC

Краткое руководство по замене электролитических конденсаторов на MLCC

Почему электролитические конденсаторы сейчас заменяются на MLCC?

Замена электролитического конденсатора
возможна сегодня из-за большой емкости MLCC

Рисунок 1: Полоса частот, используемая различными конденсаторами, и диапазон емкости

Наряду с растущей высокой степенью интеграции компонентов первичной БИС и ИС в электронных устройствах, наблюдается тенденция к снижению напряжения в источниках питания, которые питают эти компоненты.Кроме того, потребление энергии также увеличилось с развитием многофункциональности, и тенденция к использованию сильноточного тока сохраняется. Чтобы поддержать тенденцию к низкому напряжению и сильному току, источники питания электронных устройств перешли с преобразователей промежуточной шины на распределенные системы питания, в которых несколько миниатюрных преобразователей постоянного тока в постоянный (преобразователи POL) размещаются рядом с нагрузками LSI и IC.

В преобразователе POL несколько конденсаторов подключены извне.Раньше алюминиевые и танталовые конденсаторы использовались, в частности, из-за необходимости большой емкости выходных сглаживающих конденсаторов.
Однако, сложность миниатюризации этих электролитических конденсаторов является препятствием для уменьшения площади схемы. Кроме того, они обладают значительными проблемами с самонагревом из-за пульсаций тока.

MLCC, используемые во многих электронных устройствах, представляют собой конденсаторы с превосходными характеристиками, но их емкость сравнительно мала, и они используются в основном в фильтрах и высокочастотных цепях.Однако в с достижениями в технологии утонения и многослойности диэлектрических материалов MLCC в последние годы были разработаны MLCC с большой емкостью от нескольких десятков до более 100 мкФ, позволяющие заменять электролитические конденсаторы.

Меры предосторожности при использовании различных конденсаторов

Основные характеристики и меры предосторожности при использовании MLCC, алюминиевых электролитических конденсаторов и танталовых электролитических конденсаторов указаны ниже.При замене конденсаторов на MLCC важно понимать эти меры предосторожности при использовании, а также достоинства и недостатки этих конденсаторов.
Хотя MLCC большой емкости позволяют заменять электролитические конденсаторы, важно отметить их недостаток, который заключается в большой скорости изменения емкости из-за температуры и смещения постоянного тока. Кроме того, слишком низкое значение ESR имеет неблагоприятные последствия и может привести к аномальным колебаниям в цепях питания.
»Вопрос: почему возникают аномальные колебания, когда MLCC используется в качестве выходного конденсатора для преобразователя постоянного тока в постоянный?
»Вопрос-ответ: Какая фазовая компенсация используется для предотвращения аномальных колебаний?

MLCC

Танталовый
Конденсатор электролитический

Алюминиевый электролитический конденсатор

Основные характеристики
  • Миниатюрный, низкопрофильный
  • Высокая надежность, длительный срок службы
  • Low ESR (эквивалентное последовательное сопротивление)
  • Без полярности
  • Большой емкости
  • Превосходные характеристики смещения постоянного тока
  • Большой емкости
  • Недорого
Меры предосторожности при использовании
  • Большое изменение емкости из-за температуры и смещения постоянного тока (приложен постоянный ток)
  • Низкое значение ESR является преимуществом, но также может вызывать аномальные колебания в цепях питания.
  • Сравнительно высокое ESR, значительное самонагревание из-за пульсаций тока
  • Низкое номинальное напряжение
  • Большой форм-фактор
  • Короткий срок службы в условиях высоких температур
  • Высокое ESR, значительное самонагревание из-за пульсаций тока
Электролитические конденсаторы большой емкости, которые имеют тенденцию к короткому сроку службы из-за значительного самонагрева

Рисунок 2: Сравнительный пример самонагрева конденсатора из-за пульсаций тока
(частота: 100 кГц)

ESR конденсатора изменяется в зависимости от частоты.
Если ESR конденсатора установлен на определенной частоте как «R», а ток пульсации установлен как «I», «RI 2 » становится потерей мощности и самонагрев конденсатора.

Хотя большая емкость достигается с помощью электролитического конденсатора, из-за пульсаций тока и высокого ESR , который является слабым местом электролитических конденсаторов, выделяется значительное количество тепла.

Верхний предел тока пульсаций, который допускает конденсатор, называется «допустимым током пульсаций».Срок службы конденсатора уменьшится, когда использование превысит допустимый ток пульсаций.

Примечание: ESR и токи пульсации

Рисунок 3: ESR (эквивалентное последовательное сопротивление)

Идеальный конденсатор должен обладать только емкостными свойствами, но на самом деле он также содержит компоненты резистора и индуктивности из-за электродов. Компонент резистора, не показанный в идеальном конденсаторе, называется «ESR (эквивалентное последовательное сопротивление)», а компонент индуктивности - «ESL (эквивалентная последовательная индуктивность)».

Рисунок 4: Пульсации токов

DC (постоянный ток) - это когда ток течет в одном направлении, но в источниках питания постоянного тока в дополнение к постоянному току присутствуют различные наложенные друг на друга компоненты переменного тока, которые добавляют к току пульсации. Например, постоянный ток, возникающий в результате выпрямления (двухполупериодного выпрямления) промышленного переменного тока, содержит пульсирующие токи пульсации с удвоенной продолжительностью цикла промышленного переменного тока.Кроме того, пульсирующий ток цикла переключения в импульсном преобразователе постоянного тока накладывается на напряжение постоянного тока. Это называется «пульсирующий ток».

Алюминиевые конденсаторы имеют срок службы 10 лет

Алюминиевые электролитические конденсаторы широко используются в электронных устройствах, поскольку они имеют высокую емкость и недороги, но из-за их ограниченного срока службы необходимо соблюдать осторожность. Типичный срок службы алюминиевого электролитического конденсатора составляет десять лет. Это связано с тем, что емкость уменьшается по мере высыхания раствора электролита (потеря емкости).

Количество потерянного раствора электролита зависит от температуры и точно соответствует «уравнению Аррениуса» кинетики химической реакции. Если температура использования увеличится на 10 ° C, срок службы сократится вдвое. Если температура использования снизится на 10 ° C, то срок службы будет удвоен, поэтому это также называется правилом «10 ° C двойной». По этой причине срок службы сокращается еще больше при использовании в условиях значительного самонагревания из-за пульсаций тока.

Высыхание электролитического раствора также увеличивает СОЭ. Следует отметить, что пиковое значение пульсационного напряжения не превышает номинальное напряжение (выдерживаемое напряжение), когда пульсирующее напряжение накладывается на напряжение постоянного тока. Конденсатор, используемый в цепи питания, имеет номинальное напряжение, в три раза превышающее входное напряжение.

Рисунок 5: Диапазон номинального напряжения различных конденсаторов

Рисунок 6: Сравнение срока службы

Пример замены MLCC: понижающий преобразователь постоянного тока

Замена выходного конденсатора в понижающем преобразователе постоянного тока

Выделение тепла конденсаторами из-за ESR и токов пульсаций является преобладающей проблемой в выходных конденсаторах цепей питания.
На рисунке 7 показана принципиальная схема миниатюрного понижающего преобразователя постоянного тока в постоянный, который используется в качестве преобразователя POL во многих электронных устройствах.

Выходной конденсатор этого типа является основной целью для замены электролитических конденсаторов на MLCC в преобразователях постоянного тока в постоянный ток в качестве решения проблемы самонагрева, уменьшения занимаемого пространства и повышения надежности.

Рисунок 7: Принципиальная схема преобразователя POL
(понижающий преобразователь постоянного тока в постоянный)

Примечание: Принципиальная схема преобразователя POL (понижающий преобразователь постоянного тока в постоянный)

На рисунке 8 показана принципиальная схема миниатюрного понижающего преобразователя постоянного тока в постоянный, который используется в качестве преобразователя POL во многих электронных устройствах.
Основная схема преобразователя выполнена в виде ИС, а конденсатор и катушка индуктивности прикреплены снаружи к печатной плате (также существуют изделия с внутренним присоединением).
Конденсатор, который идет перед ИС, называется «входным конденсатором (Cin)», а тот, который идет после, - «выходным конденсатором (Cout)». В дополнение к сбору электрического заряда и сглаживанию выходного напряжения выходной конденсатор в преобразователе постоянного тока играет роль заземления и устранения составляющей пульсаций переменного тока.

Сравнение характеристик выходного конденсатора понижающего преобразователя постоянного тока

Выходные напряжения выходных конденсаторов понижающего преобразователя постоянного тока сравнивались с использованием оценочной платы следующего типа. Сравниваемые конденсаторы представляли собой типичный алюминиевый электролитический конденсатор, танталовый электролитический конденсатор, функциональный полимерный алюминиевый электролитический конденсатор и MLCC с емкостью 22 мкФ.

Рисунок 8: Сравнительная проверка выходного напряжения различных электролитических конденсаторов с помощью MLCC (продукты 22 мкФ)

MLCC имеет небольшие токи пульсаций и небольшой самонагрев из-за низкого ESR

На основе ранее заявленных условий было выполнено сравнение выходного тока и выходного напряжения типичного алюминиевого электролитического конденсатора, танталового электролитического конденсатора, функционального полимерного алюминиевого электролитического конденсатора и MLCC с емкостью 22 мкФ.
ESR в порядке убывания размера: типичный алюминиевый электролитический конденсатор> танталовый электролитический конденсатор> функциональный полимерный алюминиевый электролитический конденсатор> MLCC. Пульсации напряжения, вызывающие самонагрев, следует по аналогичной схеме. Функциональный полимерный алюминиевый электролитический конденсатор использует проводящий полимер в качестве электролита и является типом, разработанным для низкого ESR. По сравнению с обычным алюминиевым электролитическим конденсатором пульсации напряжения значительно меньше, но форм-фактор немного больше, а цена высокая.

Рисунок 9: Результаты тестирования выходного поведения (продукты 22 мкФ) различных типов электролитических конденсаторов с MLCC (характеристика B)

Частотно-импедансные характеристики и частотные характеристики ESR для каждого из них следующие.

Рисунок 10: Частотно-импедансные характеристики и частотные характеристики ESR для различных конденсаторов

По мере того, как ESR конденсатора становится ниже, пульсации напряжения могут поддерживаться на меньшем уровне. Как показано на графике ниже, ESR MLCC составляет около нескольких ммОм, что очень мало.По этой причине MLCC демонстрирует оптимальную производительность в качестве замены электролитического конденсатора.

Рисунок 11: Зависимость между ESR и пульсирующим напряжением (частота переключения 340 кГц)

Достоинства замены электролитического конденсатора в преобразователе постоянного тока на MLCC

Замена электролитического конденсатора на MLCC обеспечивает различные преимущества, такие как контроль пульсаций, а также уменьшение площади печатной платы за счет миниатюрного и низкопрофильного форм-фактора, длительного срока службы и повышения надежности.

Контроль пульсации, высокая надежность, длительный срок службы

Самонагревание из-за пульсаций тока в конденсаторах с высоким ESR сокращает срок службы конденсатора.
ESR MLCC ниже, чем у электролитического конденсатора, на двузначные числа, а длительный срок службы повышает надежность.

Рисунок 12: Контроль пульсации

Миниатюризация

Переход на миниатюрные низкопрофильные MLCC позволяет уменьшить пространство на печатной плате.

Рисунок 13: Переход с алюминиевого электролитического конденсатора на MLCC

Вопрос: можно ли управлять пульсациями напряжения, увеличивая емкость электролитического конденсатора?

ESR электролитического конденсатора немного уменьшается при увеличении емкости. Однако контролировать пульсации за счет увеличения емкости принципиально сложно. Это связано с тем, что постоянная времени увеличивается вместе с увеличением емкости.
Скорость отклика переходного явления, такого как процесс зарядки и разрядки конденсатора, может быть выражена как индекс постоянной времени, называемый (T). В RC-цепи, состоящей из сопротивления (R) и конденсатора (C), постоянная времени становится T = RC (R выражается в омах [Ω], емкость C выражается в фарадах [F]). Время, необходимое для зарядки и разрядки конденсатора, невелико, когда постоянная времени мала, и становится больше, когда постоянная времени увеличивается.
Постоянная времени становится чрезвычайно большой при использовании электролитического конденсатора с чрезмерно большой емкостью. В преобразователе постоянного тока с многократным коротким переключением разряд не завершается в течение времени выключения, и в электролитическом конденсаторе остается заряд. В результате напряжение не уменьшается в достаточной степени, в форме сигнала напряжения возникают искажения, а выходной сигнал становится нестабильным, что не позволяет эффективно контролировать пульсации (рисунок 14).

Рис. 14: Искажения формы волны алюминиевого электролитического конденсатора большой емкости

С другой стороны, MLCC

не имеют такой проблемы из-за низкого ESR в широкой полосе частот, что позволяет эффективно контролировать пульсации вместо электролитического конденсатора.

Рисунок 15: Импеданс и ESR электролитического конденсатора
и MLCC

Вопрос: почему возникают аномальные колебания, когда MLCC используется в качестве выходного конденсатора в преобразователе постоянного тока в постоянный?

Низкое значение ESR является особенностью MLCC, но оно настолько ниже по сравнению с алюминиевым электролитическим конденсатором, что, наоборот, выходное напряжение преобразователя постоянного тока становится нестабильным и вызывает колебания.
Как показано на рисунке справа, преобразователь постоянного тока сравнивает выходное напряжение с опорным напряжением, увеличивает величину ошибки с помощью усилителя ошибки (усилителя ошибки) и выполняет отрицательную обратную связь для достижения постоянного и стабильного напряжения постоянного тока. .Однако отставание фазы сигнала происходит из-за индуктивности (L) и конденсатора (C) схемы сглаживания. Когда фазовая задержка приближается к 180 °, создается состояние положительной обратной связи, в результате чего она становится нестабильной и колеблется.

Рисунок 16: Цепь отрицательной обратной связи в преобразователе постоянного тока в постоянный

Вопрос-ответ: Какая фазовая компенсация используется для предотвращения аномальных колебаний?

Существует схема платы, используемая в качестве диаграммы, чтобы определить, будет ли отрицательная обратная связь работать стабильно.Горизонтальная ось графика - частота, а вертикальная ось - усиление и фаза.
Когда фазовая задержка из-за индуктивности (L) и конденсатора (C) приближается к 180 °, возникает положительная обратная связь, и выход становится нестабильным. Однако установка усиления на 1 или меньше (0 дБ или меньше), даже если фазовая задержка составляет 180 °, сводит сигнал и может предотвратить колебания.
Подключите конденсатор и резистор рядом с усилителем ошибки, чтобы уменьшить фазовое отставание, и отрегулируйте его для его устранения. Это называется «фазовой компенсацией».Предыдущие разработки, в которых использовался алюминиевый электролитический конденсатор с высоким ESR для выходного конденсатора, не имели этой проблемы. Однако у MLCC недостаточная компенсация, что вызывает аномальные колебания, поэтому при замене конденсаторов необходимо соблюдать осторожность.

Рисунок 17: Схема платы (усиление и фазо-частотные характеристики)

Рисунок 18: Схема фазовой компенсации

Пример замены MLCC: разделительный конденсатор (байпасный конденсатор)

Замена развязывающего конденсатора (байпасного конденсатора)

Раньше электролитические конденсаторы и MLCC подключались параллельно для развязки в аналоговой цепи, но с производством MLCC большой емкости происходит замена электролитических конденсаторов на MLCC.

В частности, большая емкость требуется для уменьшения импеданса из-за большого ESR в алюминиевом электролитическом конденсаторе. Однако MLCC не требует такой же емкости, как алюминиевый электролитический конденсатор, потому что низкий ESR является особенностью MLCC. Миниатюризация и низкий профиль MLCC также позволяют сократить пространство на печатной плате, а длительный срок службы и превосходная надежность также являются преимуществами замены.

Рисунок 19: Преобразователь POL (понижающий преобразователь постоянного тока в постоянный)
, основная цепь

Примечание: развязывающий конденсатор

Когда конденсатор подключен параллельно линии питания ИС, в линии питания возникает сопротивление, которое не показано на принципиальной схеме, что может изменить напряжение источника питания и вызвать неисправность или интерференцию между цепями. .

Конденсатор подключается параллельно для управления колебаниями напряжения при зарядке и разрядке. Кроме того, поскольку конденсатор пропускает переменный ток, он устраняет или направляет шум пульсации на землю. Это называется «развязывающим конденсатором» (также называемым «шунтирующим конденсатором»).

Рисунок 20. Роль развязывающего конденсатора

Для использования с развязкой идеальный конденсатор должен иметь низкий импеданс в широком диапазоне частот от низкого до высокого, но в действительности частотно-импедансные характеристики конденсатора следуют V-образной кривой.

Частота на впадине V-образной формы называется «саморезонирующей частотой» (SRF), и она действует как конденсатор в области ниже SRF. По этой причине конденсаторы с разными характеристиками обычно подключаются параллельно, чтобы охватить широкий диапазон частот в приложениях развязки.

Рисунок 21: Роль разделительного конденсатора

Преимущества замены электролитического конденсатора на MLCC в преобразователе постоянного тока
Вопрос-примечание: Какое антирезонансное явление возникает, когда MLCC используется в качестве разделительного конденсатора?

Низкое ESR - это особенность MLCC, но это может иметь неблагоприятные последствия даже в приложениях с развязкой.Например, несколько MLCC подключены параллельно для развязки в ИС, работающей с большим током и низким напряжением. Конденсатор функционирует как конденсатор ниже полосы частот SRF (саморезонирующая частота) и как индуктор над SRF.

По этой причине, когда SRF двух MLCC близки друг к другу, между SRF индуктивностью и конденсатором создается параллельный резонансный контур LC, и они легко колеблются. Это явление называется «антирезонансным».Антирезонанс создает интенсивные пики импеданса, которые ослабляют эффект удаления шума на этой частоте. Это может стать причиной нестабильности напряжения источника питания и неисправности цепи.

Рисунок 22: Параллельные соединения MLCC для развязки и антирезонансная проблема

Руководство по замене электролитического конденсатора на MLCC

В этом разделе объясняется, как выбрать оптимальный MLCC для предполагаемого применения при замене электролитического конденсатора на MLCC.Используйте его, чтобы повысить надежность своих продуктов.

Меры предосторожности при выборе конденсаторов на основе характеристик
Внимание! Емкость материалов с высокой диэлектрической проницаемостью будет изменяться в зависимости от приложенного напряжения

MLCC - лучший конденсатор, но у него есть и недостатки. Емкость MLCC изменяется в зависимости от приложенного напряжения. Это называется «характеристикой смещения постоянного тока», когда подается постоянное напряжение. Изменения емкости (зависящие от смещения постоянного тока) редко наблюдаются при MLCC с низкой диэлектрической проницаемостью (тип 1), но появляются при MLCC с высокой диэлектрической проницаемостью (тип 2).

Это вызвано внутренней поляризацией сегнетоэлектрика (BaTiO3 и т. Д.), Используемого материалом с высокой диэлектрической проницаемостью. По этой причине , пожалуйста, учитывайте диэлектрические характеристики, используемое напряжение и выдерживаемое напряжение при выборе, если он будет использоваться при подаче напряжения постоянного тока. Также существует тенденция к значительному уменьшению емкости в конденсаторах миниатюрных размеров. При выборе емкости необходимо также учитывать характеристики смещения постоянного тока.

Рисунок 23: Скорость изменения емкости
- Пример характеристики смещения постоянного тока (высокая диэлектрическая постоянная)

Рисунок 24: Влияние характеристики смещения постоянного тока (сравнение эффективной емкости при подаче напряжения 3,3 В)

Оптимальная линейка MLCC для замены электролитических конденсаторов

Щелкнув по различным параметрам ниже существующего заменяющего конденсатора, вы увидите рекомендуемый продукт MLCC.
* Обратите внимание, что представленная здесь информация не гарантирует совместимость продукта.
* Пожалуйста, примите решение после тщательного тестирования совместимости продукта.

Как выбрать оптимальный MLCC для замены электролитического конденсатора (PDF)

Вы можете просмотреть рекомендуемые продукты на замену, просто нажав.

TDK предлагает обширную линейку MLCC для достижения успеха в замене алюминиевых и танталовых электролитических конденсаторов. Выберите подходящий MLCC для своего приложения, чтобы повысить надежность ваших продуктов.

Краткое руководство по замене электролитического конденсатора на MLCC

  • В последние годы производство MLCC с высокой емкостью от нескольких десятков до более 100 мкФ сделало возможным замену танталовых и алюминиевых электролитических конденсаторов.
  • Переход на MLCC в широком спектре потребительских и промышленных устройств развивается благодаря их высокому номинальному напряжению, превосходному контролю пульсаций, длительному сроку службы и высокой надежности.

* Слабым местом MLCC с высокой диэлектрической проницаемостью является уменьшение емкости из-за температуры или приложения постоянного напряжения (температурная характеристика, характеристика смещения постоянного тока).Кроме того, функция чрезвычайно низкого ESR может вызвать аномальные колебания и возникновение антирезонанса, поэтому при замене конденсаторов необходимо соблюдать осторожность.

* Пожалуйста, выберите правильный MLCC для вашего приложения, чтобы повысить надежность ваших продуктов.

Поддержка продукта

Инструменты технической поддержки

TDK бесплатно предоставляет следующие инструменты поддержки дизайна на нашем веб-сайте. Используйте их для проектирования схем и мер противодействия ЭМС.

■ TVCL: модели электронных компонентов для симуляторов схем

Это имитационные модели для воспроизведения характеристик электронных компонентов TDK в симуляторах. Предлагаются S-параметр, модель эквивалентной схемы, SPICE-модель, а также библиотеки для различных симуляторов. Мы рекомендуем модель смещения постоянного тока, которая учитывает частоту и характеристики смещения постоянного тока, для проектирования схемы источника питания.

.Электролитический конденсатор

- Характеристики и применение

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar
            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • Числа
              • Число чисел Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убыток
              • Полиномиальные уравнения
              • Разделение фракций
            • Microology
        • FORMULAS
          • Математические формулы
          • Алгебраические формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • 000E
          • 000
          • 000
          • 000 Калькуляторы
          • 000 Образцы документов для класса 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 1 1
          • Образцы документов CBSE для класса 12
        • Вопросники предыдущего года CBSE
          • Вопросники предыдущего года CBSE, класс 10
          • Вопросники предыдущего года CBSE, класс 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • HC Verma Solutions Класс 12 Физика
        • Решения Лакмира Сингха
          • Решения Лакмира Сингха класса 9
          • Решения Лахмира Сингха класса 10
          • Решения Лакмира Сингха класса 8
        • 9000 Класс
        9000BSE 9000 Примечания3 2 6 Примечания CBSE
      • Примечания CBSE класса 7
      • Примечания
      • Примечания CBSE класса 8
      • Примечания CBSE класса 9
      • Примечания CBSE класса 10
      • Примечания CBSE класса 11
      • Примечания 12 CBSE
    • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
    • CBSE Примечания к редакции класса 10
    • CBSE Примечания к редакции класса 11
    • Примечания к редакции класса 12 CBSE
  • Дополнительные вопросы CBSE
    • Дополнительные вопросы по математике класса 8 CBSE
    • Дополнительные вопросы по науке 8 класса CBSE
    • Дополнительные вопросы по математике класса 9 CBSE
    • Дополнительные вопросы по науке
    • CBSE Вопросы
    • CBSE Class 10 Дополнительные вопросы по математике
    • CBSE Class 10 Science Extra questions
  • CBSE Class
    • Class 3
    • Class 4
    • Class 5
    • Class 6
    • Class 7
    • Class 8 Класс 9
    • Класс 10
    • Класс 11
    • Класс 12
  • Учебные решения
  • Решения NCERT
    • Решения NCERT для класса 11
      • Решения NCERT для класса 11 по физике
      • Решения NCERT для класса 11 Химия
      • Решения NCERT для биологии класса 11
      • Решение NCERT s Для класса 11 по математике
      • NCERT Solutions Class 11 Accountancy
      • NCERT Solutions Class 11 Business Studies
      • NCERT Solutions Class 11 Economics
      • NCERT Solutions Class 11 Statistics
      • NCERT Solutions Class 11 Commerce
    • NCERT Solutions for Class 12
      • Решения NCERT для физики класса 12
      • Решения NCERT для химии класса 12
      • Решения NCERT для биологии класса 12
      • Решения NCERT для математики класса 12
      • Решения NCERT, класс 12, бухгалтерия
      • Решения NCERT, класс 12, бизнес-исследования
      • NCERT Solutions Class 12 Economics
      • NCERT Solutions Class 12 Accountancy Part 1
      • NCERT Solutions Class 12 Accountancy Part 2
      • NCERT Solutions Class 12 Micro-Economics
      • NCERT Solutions Class 12 Commerce
      • NCERT Solutions Class 12 Macro-Economics
    • NCERT Solut Ионы Для класса 4
      • Решения NCERT для математики класса 4
      • Решения NCERT для класса 4 EVS
    • Решения NCERT для класса 5
      • Решения NCERT для математики класса 5
      • Решения NCERT для класса 5 EVS
    • Решения NCERT для класса 6
      • Решения NCERT для математики класса 6
      • Решения NCERT для науки класса 6
      • Решения NCERT для класса 6 по социальным наукам
      • Решения NCERT для класса 6 Английский язык
    • Решения NCERT для класса 7
      • Решения NCERT для математики класса 7
      • Решения NCERT для науки класса 7
      • Решения NCERT для социальных наук класса 7
      • Решения NCERT для класса 7 Английский язык
    • Решения NCERT для класса 8
      • Решения NCERT для математики класса 8
      • Решения NCERT для науки 8 класса
      • Решения NCERT для социальных наук 8 класса ce
      • Решения NCERT для класса 8 Английский
  • .Типы конденсаторов

    : символы, функции, применения, часто задаваемые вопросы

      • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
      • КОНКУРСНЫЕ ЭКЗАМЕНА
        • BNAT
        • Классы
          • Класс 1-3
          • Класс 4-5
          • Класс 6-10
          • Класс 110003 CBSE
            • Книги NCERT
              • Книги NCERT для класса 5
              • Книги NCERT, класс 6
              • Книги NCERT для класса 7
              • Книги NCERT для класса 8
              • Книги NCERT для класса 9
              • Книги NCERT для класса 10
              • NCERT Книги для класса 11
              • NCERT Книги для класса 12
            • NCERT Exemplar
              • NCERT Exemplar Class 8
              • NCERT Exemplar Class 9
              • NCERT Exemplar Class 10
              • NCERT Exemplar Class 11
              • 9plar
              • RS Aggarwal
                • RS Aggarwal Решения класса 12
                • RS Aggarwal Class 11 Solutions
                • RS Aggarwal Решения класса 10
                • Решения RS Aggarwal класса 9
                • Решения RS Aggarwal класса 8
                • Решения RS Aggarwal класса 7
                • Решения RS Aggarwal класса 6
              • RD Sharma
                • RD Sharma Class 6 Решения
                • RD Sharma Class 7 Решения
                • Решения RD Sharma Class 8
                • Решения RD Sharma Class 9
                • Решения RD Sharma Class 10
                • Решения RD Sharma Class 11
                • Решения RD Sharma Class 12
              • PHYSICS
                • Механика
                • Оптика
                • Термодинамика
                • Электромагнетизм
              • ХИМИЯ
                • Органическая химия
                • Неорганическая химия
                • Периодическая таблица
              • MATHS
                • Статистика
                • 9000 Pro Числа
                • Числа
                • Числа
                • Число чисел Тр Игонометрические функции
                • Взаимосвязи и функции
                • Последовательности и серии
                • Таблицы умножения
                • Детерминанты и матрицы
                • Прибыль и убыток
                • Полиномиальные уравнения
                • Разделение фракций
              • Microology
          • FORMULAS
            • Математические формулы
            • Алгебраические формулы
            • Тригонометрические формулы
            • Геометрические формулы
          • КАЛЬКУЛЯТОРЫ
            • Математические калькуляторы
            • 000E
            • 000
            • 000
            • 000 Калькуляторы
            • 000 Образцы документов для класса 6
            • Образцы документов CBSE для класса 7
            • Образцы документов CBSE для класса 8
            • Образцы документов CBSE для класса 9
            • Образцы документов CBSE для класса 10
            • Образцы документов CBSE для класса 1 1
            • Образцы документов CBSE для класса 12
          • Вопросники предыдущего года CBSE
            • Вопросники предыдущего года CBSE, класс 10
            • Вопросники предыдущего года CBSE, класс 12
          • HC Verma Solutions
            • HC Verma Solutions Класс 11 Физика
            • Решения HC Verma Физика класса 12
          • Решения Лакмира Сингха
            • Решения Лакмира Сингха класса 9
            • Решения Лахмира Сингха класса 10
            • Решения Лакмира Сингха класса 8
          • 9000 Класс
          9000BSE 9000 Примечания3 2 6 Примечания CBSE
        • Примечания CBSE класса 7
        • Примечания
        • Примечания CBSE класса 8
        • Примечания CBSE класса 9
        • Примечания CBSE класса 10
        • Примечания CBSE класса 11
        • Примечания 12 CBSE
      • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
    900 04 .

    High End Audio - электролитические конденсаторы

    Статья
    Сравнение электролитических конденсаторов - май 2008 г.
    Последняя редакция июнь 2008 г.
    Сравнение электролитических конденсаторов - май 2008, Эрик Хуанеда

    Трудно выбрать хорошие сглаживающие электролитические конденсаторы.На форумах каждый дает свой рецепт. Black Gate, Elna, Panasonic ... что лучше всего подходит для моего аудиоустройства? На этих страницах я даю сравнение с прослушиванием между известными сериалами.

    Для этой попытки я использую свой предусилитель модели 3 со следующим источником питания. Я наблюдаю много недель нагревания перед сравнением. Я использую переключатели для выполнения теста A-B. Я слушаю одну серию за раз. Один включается, остальные выключаются. Подтягивающий резистор поддерживает напряжение даже при конденсаторы не прослушиваются.Вне сеанса прослушивания все переключатели включены.

    Технические данные производителя
    Производитель Серия Значение В Импеданс
    (мА)
    Импеданс
    (Ом)
    Таблицы данных
    Panasonic ECA 100 50V 250 таблицы данных
    Panasonic FC 120 50V 615 0.162 листы данных
    Panasonic FC 100 100V таблицы данных
    Panasonic * FM 100 50V 870 0,061 таблицы данных
    Rubycon ZL 100 50V 724 0,074 таблицы данных
    Nichicon HD 100 50V 724 0.074 листы данных
    Sprague 515D (M) 100 63V 300 таблицы данных
    Elna * Silmic II RFS 100 50V 380 таблицы данных
    Elna Silmic II RFS 100 63V 415 таблицы данных
    Черные ворота (Rubycon) BG 100 50V
    * Не тестировалось
    Первые замечания
    • Настоящая серия Panasonic ECA - это Panasonic M
    • Purist предпочитают Black Gate BG-N или BG-NX, чем стандартную серию BG
    • Серия
    • Black Gate снята с производства
    • Panasonic FC 100F 50V не существует
    Тест на прослушивание
    • ZL - Рубикон ZL
    • FC - Panasonic FC 50V
    • SI - Elna Silmic II
    • BG - Черные ворота
    • SP - Sprague 515D (М)
    • HD - Nichicon UHD
    • ЕС - Panasonic ECA (Panasonic MA)
    • FD - Panasonic FC 100V
    Понятные диаграммы.Только чтобы понять, какое решение звучат лучше, чем другой. Диаграммы не в масштабе. Не сравнивайте между нами. Только сравнительные значения, без абсолютных значений.

    Примечание о тесте на прослушивание

    Тест на прослушивание (по качеству)
    Изображение Ссылка Результат
    Rubycon ZL
    артикул: 50ZL100M8X11.5
    У него очень низкий ESR, но восстановление звука плохое, очень четкое и яркое. Этот аппарат не интересен для аудио.
    Nichcon UHD Как и Rubycon, он дает очень низкое ESR, но восстановление звука плохое, очень четкое и яркое. Лучше (немного), чем Rubycon, но недостаточно качества для звука.
    Panasonic ECA
    (Панасоник М)
    Это устройство предназначено для аудио.Он предотвращает все лишнее; это один из конденсаторов мягкости, его динамика немного плоская. Он займет достойное место на недорогих устройствах.
    Sprague 515D (М) Поставил этот стандартный конденсатор для сравнения с более новым. Все остальные устройства имеют потерю ESR или предназначены для аудио. Sprague 515DM - стандартного назначения. Я произвольно выбираю это устройство, потому что у меня есть его запас. Я думал, что он представит скромный звуковой рендер. Вовсе нет, это хороший выбор для стандартного аудиоустройства.
    Панасоник FC
    50V
    С FC мы переходим к устройствам высокого класса. Звуковые характеристики очень хорошие. Это очень красивый и приятный аппарат. У него хорошо закаленный характер, с небольшой колоратурой.
    Panasonic FC
    100 В
    Я поставил это устройство на тест, чтобы сравнить одинаковые конденсаторы с разной изоляцией. Чем выше изоляция, тем меньше DA (диэлектрическое поглощение).Он так же приятен, как прибор на 50 В, с большей линейностью и меньшей окраской.
    Черные ворота BG С black gate мы переходим к топовым устройствам. Звуковая производительность далека от всех прецедентов устройств. Все параметры на высоте. Тона очень реалистичные. Музыка словно выходит из тумана. Многие думают, что это лучший выбор для аудио. На самом деле BG не очень нейтрален (несколько). Голоса усилены, а басы очень округлые.Эти настройки по умолчанию очень хорошо подходят для люксов с средним дизайном, это льстит современной и джазовой музыке.
    Элна Силмик II Elna Silmic II - лучший прибор в этом тесте. По сравнению с очень хорошими Black Gate, Elna звучит лучше. Между Sprage и Black Gate такая же разница, чем между Black Gate и Elna. Это, безусловно, лучший выбор среди электролитических конденсаторов для топовых устройств. Хороший звук для классической, барочной, джазовой и современной музыки.
    Вывод
    Стандартные конденсаторы (например, Sprague) по-прежнему являются хорошим выбором для стандартных аудиоустройств. Это звучит лучше, чем неадекватные конденсаторы с низким ESR.

    Этот тест подтверждает хорошую репутацию Panasonic FC. Это лучшие конденсаторы без звука.

    Конденсатор аудиосистемы (Elna, Black Gate) звучит лучше, чем везде. Эти устройства предназначены для высококачественного звука. У них особая внутренняя структура, которая кажется очень важной для рендеринга звука.При этом очень низкий уровень СОЭ не является аргументом в пользу качества. Elna дает подробную информацию и фотографии о внутренних структура (шелковое волокно). Перейти на веб-страницы Elna

    Если вы ищете конденсаторы Elna получше, обратите внимание на конденсаторы из металлизированного полипропилена.

    .

    Смотрите также

    От вздутия живота народные средства

    От Вздутия Живота Народные Средства

    Народные средства от вздутия живота Вздутие живота или метеоризм характеризуется излишним скоплением газов в кишечнике, которое может вызывать болезненные… Подробнее...
    Заболевания вызывающие тошноту, диарею и повышенную температуру тела

    Температура Понос Тошнота

    Заболевания вызывающие тошноту, диарею и повышенную температуру тела Каждый хоть однажды сталкивался с такими неприятными симптомами, как температура, понос,… Подробнее...
    Почему у ребенка зеленый понос

    Понос Зеленый У Ребенка

    Почему у ребенка зеленый понос Появление у ребенка зеленого поноса часто вводит в панику его родителей. Не зная причину появления поноса зеленого цвета, в… Подробнее...
    Какие болезни сопровождаются поносом и рвотой

    Температура Понос Рвота У Ребенка

    Какие болезни сопровождаются поносом и рвотой У маленького ребенка еще только формируется защитная система организма, и… Подробнее...
    Лекарство от вздутия живота

    Лекарство От Вздутия Живота

    Чем снять вздутие живота Вздутие живота, как его называют врачи, метеоризм, — неприятная, а главное, исключительно… Подробнее...
    Причины поноса после еды

    После Еды Сразу Иду В Туалет По Большому - Понос

    Причины поноса после еды Некоторый жалуются, что после еды сразу идут в туалет по-большому из-за поноса. Такая… Подробнее...
    Понос после арбуза

    Понос После Арбуза

    Какие продукты могут вызвать понос Расстройство пищеварения может возникнуть не только как реакция на отравление, но и… Подробнее...
    Первая помощь ребенку при рвоте

    Рвота У Ребенка Без Температуры И Поноса Что Делать - 3 Года

    Первая помощь ребенку при рвоте Дети до 5 лет являются самой восприимчивой к различным вирусам и бактериям группой.… Подробнее...

    Информация, размещенная на сайте, не может рассматриваться как рекомендация пациентам по диагностированию и лечению каких-либо заболеваний и не может служить заменой консультации с врачом. Ничто в данной информации не должно быть истолковано как призыв неспециалистам самостоятельно лечить диагностированные заболевания. Данная информация не может быть использована для принятия решения об изменении порядка и режима применения продуктов, рекомендованного врачом.


    Copyright medrox.ru © 2015- Карта сайта, XML.